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ABSTRACT

Motivation: Next-generation sequencing technologies generate very
large numbers of short reads. Even with very deep genome coverage,
short read lengths cause problems in de novo assemblies. The use
of paired-end libraries with a fragment size shorter than twice the
read length provides an opportunity to generate much longer reads
by overlapping and merging read pairs before assembling a genome.
Results: We present FLASH, a fast computational tool to extend the
length of short reads by overlapping paired-end reads from fragment
libraries that are sufficiently short. We tested the correctness of the
tool on one million simulated read pairs, and we then applied it
as a pre-processor for genome assemblies of lllumina reads from
the bacterium Staphylococcus aureus and human chromosome 14.
FLASH correctly extended and merged reads >99% of the time on
simulated reads with an error rate of <1%. With adequately set
parameters, FLASH correctly merged reads over 90% of the time
even when the reads contained up to 5% errors. When FLASH was
used to extend reads prior to assembly, the resulting assemblies had
substantially greater N50 lengths for both contigs and scaffolds.
Availability and Implementation: The FLASH system s
implemented in C and is freely available as open-source code
at http://www.cbcb.umd.edu/software/flash.
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1 INTRODUCTION

Thanks to the rapidly dropping cost of DNA sequencing
technologies, de novo whole-genome sequencing (WGS) projects
are generating very deep coverage of new genomes. However, even
with the high coverage that is produced by these technologies,
and despite dramatic improvements in genome assembly algorithms
(Gnerre et al., 2011; Li et al., 2010), the short read lengths produced
by next-generation technologies present a significant barrier to
reconstructing a genome from WGS data. Any increase in read length
will have a significant, positive impact on the quality of genome
assemblies.

Several current protocols generate sequences from both ends of a
library of DNA fragments. If the fragments are shorter than twice the
read length, the resulting paired-end reads will overlap. For example,
a project might use 175bp libraries with 100 bp reads. This type
of library presents an opportunity to extend the reads’ length by
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overlapping and merging paired-end reads before using these reads
in the assembly.

In this article, we present FLASH (Fast Length Adjustment of
SHort reads), a software tool to find the correct overlap between
paired-end reads and extend the reads by stitching them together. We
tested the correctness of the tool on one million simulated 100 bp
paired-end reads and found it to be highly reliable. We then used real
data to measure the effect of this merging procedure on the quality of
an assembly. We also compared the speed and accuracy of FLASH
to that of SHERA (Rodrigue et al., 2010), a related tool that also
extends read length by finding the overlap between paired-end reads.

2 METHODS

FLASH requires as input a fastq library of paired-end reads in which at least
some of the reads overlap the read generated from the opposite end of the
same DNA fragment. It processes each read pair separately and searches for
the correct overlap between the paired-end reads. When the correct overlap
is found, the two reads are merged, producing an extended read that matches
the length of the original DNA fragment from which the paired-end reads
were generated.

To find the correct overlap, FLASH considers every possible legal overlap
between paired-end reads, where a legal overlap is defined as any ungapped
alignment between two reads such that at least min-olap bases overlap
one another. We chose to allow only ungapped alignments because with
the Illumina sequencing platforms, which are the primary focus of our
experiments, insertions and deletions are very rare. The overall flow of the
algorithm is as follows:

(1) Align the pair of reads so that they overlap completely; e.g. by the

full length of the shorter read.

(2) Repeat while the overlap is longer than min-olap:

(a

Ra?

Calculate the overlap length. If an ‘N’ occurs in the overlapping
region, it is not counted towards the overlap length.

(b

=

Calculate the score for the overlap as the ratio between the number
of mismatches and the overlap length, ignoring N’s.

(c

~

If the score of the overlap is smaller than the score of the best
overlap, save it as the new best overlap.

(d) If the score is equal to the best previous score:
(1) Calculate the average quality value of all mismatches in the
overlap.
(2) If the average quality value is smaller than the average quality
value of mismatches in the best overlap, save the current
overlap as the best overlap.

(e

N

Slide the reads apart by one base, reducing the overlap by one.
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Fig. 1. Distribution of fragment lengths. The horizontal axis shows the fragment length, and the vertical axis shows the number of fragments of a given

length. (a) Staphylococcus aureus. (b) Human chromosome 14.

(3) Compare the score of the best overlap to the mismatch threshold. If
the score is bigger than the mismatch threshold, report that no good
overlap was found; otherwise, return the best overlap.

FLASH scores every possible legal overlap between paired-end reads.
Because a legal overlap is defined here as an ungapped alignment between
two reads that overlap by at least min-olap bases, the maximum number of
overlaps that are considered for each pair of reads is Omax =R —m, where R
is the read length and m is the minimum overlap. The number of overlaps
considered might be smaller than Op,y if the reads contain a large number
of N’s.

By default, the min-olap parameter is set to 10 bp. In our experiment, lower
values of min-olap resulted in many incorrectly extended reads, because
shorter overlaps often occur by chance in large WGS datasets, especially
when mismatches are allowed. Higher values of min-olap will reduce bad
merges further, but will make the system miss too many true overlaps. The
trade-off between sensitivity and precision for different min-olap values is
shown in Figure 6, described in Section 3.

To find the best overlap for a pair of reads, we calculate the score for each
overlap as the ratio between the number of mismatches in the overlapping
region and the length of that region. If an ‘N’ occurs at any position in any
read, that position is ignored and not counted towards either mismatches or
total overlap length. We select the overlap with the lowest ratio as the best
overlap for a given read pair.

Assuming the DNA fragment size selection step was done with relatively
tight controls, we expect the length of the overlap between paired-end reads
within a library to be normally distributed, with a mean determined by the
fragment size F and the read length R as 2R — F. For our two sample datasets
from Staphylococcus aureus and human chromosome 14, we were able
to compute the true length empirically by mapping read pairs against the
genomes. Figure 1 shows the distribution of fragment lengths. The bacterial
fragments had a mean length of 170bp while the human fragments were
slightly shorter, ~165 bp. In the case of human data, the distribution is much
tighter than in the case of bacterial data.

Considering that the typical Illumina error distribution has more errors
towards the 3’-end of the read, we expect a higher ratio of true sequencing
errors to occur in shorter overlaps, because both paired-end reads will only
overlap in the regions with the highest error rate. This will lead any simple
scoring scheme to prefer longer overlaps, which might not always be correct.

To determine whether a long overlap is better than a shorter one, we
define max-olap to be the maximum length of the overlap expected in 90%

of read pairs for a given read length and fragment size. For all overlaps
longer than max-olap, we calculate their score as the ratio between the
number of mismatches and max-olap rather than the actual overlap length.
The parameter max-olap is set to 70 by default, which we found to work
well for 100-bp Illumina reads from 180bp fragments. Note that for the
S.aureus data, 70 was too short because the fragment length was shorter
than expected, and because the wide distribution of lengths resulted in many
pairs overlapping by >70 bp. The algorithm’s strong performance despite this
deviation from the input fragment length indicates that the heuristic scoring
function is robust.

The result of this scheme is that we sometimes prefer overlaps shorter
than the maximum overlap detected, even if the mismatch to overlap ratio is
greater for the shorter overlap. However, if an overlap longer than max-olap
is substantially better than any shorter overlap, we select the longer overlap.

Because fragment lengths vary considerably, some pairs of reads will fail
to overlap or will overlap by too few bases to be detected; e.g. for fragments
>190bp, our method will not detect overlap between two 100bp reads.
To distinguish between low-quality overlapping reads and non-overlapping
reads, we created a mismatch ratio threshold, mr, which defines the maximum
proportion of mismatches that we allow in any overlapping region. This
value, set to 0.25 by default, can be increased to produce more aggressive read
merging, or decreased to produce more conservative merging. The impact
of different mismatch ratios on the accuracy of read merging is shown in
Figure 5. As the figure shows, with a 1% error rate in reads, over 99%
of read pairs are correctly processed when 0.2 <mr <0.3. We selected the
median of this range (0.25) as the default value.

If the best overlap found between two paired-end reads has a mismatch
ratio less than or equal to mr, the paired-end reads are merged. For each
position in the overlapping region where the reads disagree, the algorithm
chooses the base with the higher quality value. FLASH outputs a fastq file
containing the extended reads, where each base in the overlapping region
is assigned the quality value of the base with the higher quality where the
reads agree, and a score of 2 where they disagree. FLASH also outputs two
fastq files containing paired-end reads for which no good overlap was found.
These unmerged reads can be used in the assembly as a normal paired-end
fragment library.

3 RESULTS AND DISCUSSION

We tested the correctness of FLASH using both simulated and
real data, and compared it for speed and correctness to SHERA
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Fig. 2. Distribution of fragment lengths used to generate paired-end reads.
The horizontal axis shows the fragment length, and the vertical axis shows
the number of fragments of a given length.

(Rodrigue et al., 2010), the only other existing tool that combines
paired-end reads from short fragment library. We also measured
how much FLASH affected the genome assemblies of S.aureus and
human chromosome 14.

3.1 Simulated data

We simulated 1 000 000 pairs of 100 bp long reads. The paired-end
reads were generated from fragments with a mean length of 180 bp,
normally distributed with an SD of 20bp. Error-free reads were
generated using wgsim from the SAMtools package (Li et al., 2009).
We inserted errors at a rate of 1, 2, 3 and 5% with an increasing
probability of errors towards the end of reads. [The probability of
error is defined by y=a(1.05)*, where x is the read position and a and
y are based on the error rate and read length.] In the simulated data,
16.4% of fragments had length >200, 5.5% had paired-end reads
overlapping by <5bp, and an additional 8% had paired-end reads
overlapping by <10bp. Thus, overall 30% of pairs overlapped by
too little to be detected with default settings. A very small fraction
of fragments (<1%) were <100bp. The distribution of fragment
lengths is shown in Figure 2, while the distribution of errors in the
1% error rate sample is shown in Figure 3. The simulated reads used
in this data are available at the FLASH website.

When evaluating FLASH, we considered the trade-off between
correct and incorrect merges of paired reads (Figs 5 and 6). We
assume that two 100 bp reads should have been merged if they were
generated from a fragment that was 100-190 bp in length, because
we required a minimum overlap of 10 bp. Results for FLASH and
SHERA for simulated reads with error rates ranging from 0% to 5%
are shown in Table 1.

In the table, correct merges refers to the number of read pairs
correctly overlapped and merged together (Fig. 4a). A merge is
considered correct if a fragment of the correct length is produced,
even if the wrong base is selected as the consensus base at one of the
overlapping positions. (The only time there is a choice is when the
two reads disagree at, a given site, in which case FLASH chooses
the base with the higher quality value, breaking ties randomly.)

Correct non-merges are paired-end reads that were not merged
together and that were generated from fragments that could not be
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Fig. 3. Number of errors in the 1% error rate sample for each position in
a read. The horizontal axis shows the read position, and the vertical axis
shows the total number of errors at each position summed over the entire set
of 1000000 pairs.

extended (Fig. 4d); i.e. they were <100bp or >190 bp. A total of
299 563 pairs in each simulated sample met this criterion.

Incorrect non-merges are pairs that were not merged even though
they were derived from fragments between 100bp and 190bp in
length (Fig. 4b). And finally, incorrect merges are read pairs that
were merged together and where either (i) the reads were too far
apart and should not have been merged (Fig. 4e) or (ii) the resulting
extended read is the wrong length (Fig. 4c).

FLASH processed error-free reads correctly 99.7% of the time,
with a very small number of false merges (2644) and just 10
cases where the system failed to merge a pair that it should have.
In contrast, SHERA merged only 91.6% of the pairs correctly,
with dramatically higher numbers of reads that were either merged
incorrectly or failed to merge. For FLASH, the incorrect merging of
reads results from two sources. First, if there are two distinct perfect
overlaps between a pair of reads, FLASH selects the longer overlap,
which on rare occasions results in an incorrect overlap. Second,
because FLASH allows 25% of bases in the overlapping region to
be mismatches, on rare occasions an apparent overlap comes from
fragments >190 bp that do not actually overlap.

With a 1% error rate, which is approximately the error rate of
current Illumina sequencers, FLASH correctly handles the same
overall percentage of all pairs, with slightly fewer incorrect merges
but more incorrect non-merges. SHERA also performed similarly
to its results on error-free data, and again had far more incorrectly
processed pairs than FLASH.

For reads with 2% error, FLASH still processed >98% of the pairs
correctly, but the number of pairs that it failed to merge increased
significantly. Increasing the maximum mismatch rate from 0.25 (the
default) to 0.3 decreased these failed merges from 14 058 to 4410
(see the column labeled FLASH-0.3 under 2% error.) Thus, if we
know that a dataset has a higher error rate, then we can adjust FLASH
accordingly to improve its performance.
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Table 1. Results of both systems on simulated reads

Correct Correct Total Incorrect Incorrect Total

merge non-merge correct (%) merge non-merge incorrect (%)
Error-free FLASH 700 347 296 999 99.73 2644 10 0.27
SHERA 637541 278 648 91.62 21250 62551 8.38
1% error FLASH 699 177 297 669 99.68 2017 1137 0.32
¢emor SHERA 629 166 279829 90.90 20106 70899 9.10
FLASH 686 169 298 124 98.43 1649 14058 1.57
2% error FLASH-0.3 695797 294 809 99.06 4984 4410 0.94
SHERA 617247 280922 89.82 19044 82787 10.18
FLASH 649 094 298483 94.76 1393 51030 5.24
3% error FLASH-0.35 690561 292390 98.30 7650 9399 1.70
SHERA 602232 281873 88.41 18138 97757 11.59
FLASH 480 145 298912 77.91 1214 219729 22.09
5% error FLASH-0.35 641346 295108 93.65 5733 57813 6.35
SHERA 563706 283369 84.71 17032 136093 15.29

Ground truth FLASh Output Label

Gl —— [ T

Correct merge

O TN [ SN Incorrect non-merge

G I

Incorrect merge

@} S S Correct non-merge

O [ [

Incorrect merge

Fig. 4. Possible outcomes of FLASH for a pair of reads from opposite ends of the same fragment. The two reads are shown in white and black, and the grey
region represents their overlap. For overlapping reads, FLASH can merge the pair correctly as shown at the top, or it can fail in two ways: either by failing
to merge them or by creating the wrong length overlap. If the reads do not overlap, the correct output will leave them unchanged (a ‘non-merge’).

Ateven higher error rates of 3 and 5%, FLASH still handled a large
majority of pairs correctly, but the numbers dropped dramatically
at 5%. Increasing the mismatch ratio to 0.35 for both these trials
increased the correct performance of FLASH, and for the 5% error
data the results were quite good, improving from 78% to almost 94%
of read pairs. Overall, FLASH was superior to SHERA on nearly all
these simulated datasets.

3.2 Impact of different parameters on the accuracy of
FLASH

Next we evaluate the impact of two key parameters on the accuracy
of the read merging procedure. The tests below were performed on
simulated reads with a 1% error rate, keeping all parameters constant
except for the one being evaluated.

3.2.1 Mismatch ratio Figure 5 shows how the mismatch ratio
parameter affects the number of correctly and incorrectly merged
reads. As expected, increasing the allowed mismatch ratio increases

the number of correctly merged read pairs, but at the expense of also
increasing the number of incorrectly merged pairs. It is also clear
from the graph that as the ratio drops <0.2, the number of correctly
merged pairs drops very steeply, making the optimal value for these
data, with 1% error, to be a mismatch ratio between 0.2 and 0.3.

3.2.2 Minimum overlap length Figure 6 shows the number of
correctly and incorrectly merged read pairs for different values of the
minimum overlap length parameter. As we decrease the minimum
required overlap length, the number of correctly extended reads
steadily increases, as expected. Interestingly, as the overlap drops
below 15 and then to 10bp the number of correctly merged pairs
levels off, while the errors increase rapidly.

3.3 Time requirements

FLASH currently runs only in single threaded mode, but it is very
fast especially for small to moderate datasets. We compared FLASH
and SHERA on one million pairs of 100 bp long reads. We measured
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Fig. 5. Impact of the mismatch ratio parameter on correctness of the read
merging algorithm. The horizontal axis shows the number of incorrectly
merged read pairs, and the vertical axis shows the number of correctly merged
read pairs. The mismatch ratio parameter is shown at each point along the
graph.
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Fig. 6. Impact of the minimum overlap parameter on correctness of the read
merging algorithm. The horizontal axis shows the number of incorrectly
merged read pairs, and the vertical axis shows the number of correctly merged
read pairs. The minimum overlap value (in base pair) is shown on the graph.

performance on two computers: a six-core 2.4 GHz AMD Opteron
server with 256 GB of RAM, and a dual-core Intel Xeon 3.0 GHz
desktop computer with 2 GB of RAM. Run times are summarized
in Table 2.

As Table 2 shows, FLASH is far faster than SHERA. The most
likely source of the speedup is that FLASH is implemented in C,
while SHERA uses Perl, an interpreted language. The overall run
time for FLASH is linearly proportional to read length times the
number of reads.

3.4 Read merging and genome assembly

FLASH essentially creates longer reads from all the read pairs that
it correctly merges. Longer read lengths should have a significant
positive impact on whole-genome assembly, and therefore we
wanted to test FLASH on real data by using it as a pre-processor

Table 2. Time requirements (in seconds) to process one million pairs of
100 bp long reads on two computer systems

Computer Dual core, 3.0 GHz six core, 2.4 GHz
FLASH 129 120
SHERA 14200 8500

Table 3. Genome assemblies of S.aureus

Original FLASH SHERA
assembly
Total contig size (Mb) 291 2.94 2.96
Contig N50 size (kb) 1.45 8.40 6.04
Contig maximum (kb) 8.18 36.07 23.85
Scaffold N50 (kb) 2.07 8.80 6.40
Scaffold maximum (kb) 11.23 36.07 23.85

The N50 size is the size at which 50% of the genome is contained in contigs (or scaffolds)
of size N50 or larger. N50 values were calculated based on the known genome size of
2872915 bp. The total contig size is the number of bases contained in contigs that are
at least 100 bp long.

for two assemblers: CABOG (Miller et al., 2008), which is a recent
version of the Celera Assembler, and SOAPdenovo (Li et al., 2010).
For the two genomes used in our tests, a bacterium and the human
genome, the true assembly is known, which allowed us to evaluate
the correctness of merged read pairs as well as the correctness of
the assemblies.

3.4.1 Assembly of Staphylococcus aureus For our first test, we
used short-read data from S.aureus, which was sequenced to deep
coverage with [llumina sequencing technology by the Broad Institute
(MacCallum et al., 2009). The data comprise two paired-end
libraries, each of which we randomly sampled to 45X coverage.
The first fragment library (SRA accession SRX007714) contains
647052 pairs with a fragment size of 180bp and read length of
101 bp. The second library (SRX007711) contains 1747035 pairs
with a fragment size of 3.5 kb and read length of 37 bp. The reads
are available from the NCBI Sequence Read Archive or from
http://gage.cbcb.umd.edu/data.

We performed error correction on these reads using Quake (Kelley
et al., 2010) with a k-mer size of 18. Quake discards reads that have
too many errors, which results in some reads losing their ‘mate’. We
used these reads as an unpaired library, along with the two paired-end
error corrected libraries to assemble S.aureus using SOAPdenovo.
Note that we could not run CABOG on this dataset, because that
assembler requires a minimum read length of 64 bp. The results
from the initial SOAPdenovo assembly are shown in Table 3 in the
Original column.

Next, we used FLASH to merge read pairs from the 180 bp
fragment library, which resulted in 369 496 merges. With Illumina
paired-end sequencing, the second read in each pair is typically of
much lower quality, which probably explains why FLASH could
not merge a higher percentage of the reads. Figure 1 shows that
the fragment lengths were ~170 bp. We retained the read pairs that
were not merged and used them in the assembly as a paired-end
library with insert size of 180bp. As in the first assembly, we ran
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Table 4. Results of merging read pairs on S.aureus data

Table 6. Genome assembly of human chromosome 14 using CABOG

FLASH SHERA
Correct merge 347833 346 141
Correct non-merge 239510 174350
Total correct (%) 90.8 80.4
Incorrect merge 21663 55521
Incorrect non-merge 38046 71040
Total incorrect (%) 9.2 19.6

Original FLASH

assembly assembly
Total contig size 86.28 Mb 86.76 Mb
Contig N50 41.54kb 90.67 kb
Maximum contig length 276.78 kb 539.38kb
Scaffold N50 360.87 kb 1.10Mb
Maximum scaffold length 2.13Mb 4.05Mb

Table 5. Genome assembly of human chromosome 14 using SOAPdenovo

Original FLASH

assembly assembly
Total contig size (Mb) 90.58 94.29
Contig N50 (kb) 3.48 3.78
Maximum contig length (kb) 37.02 37.66
Scaffold N50 (kb) 313.48 399.84
Maximum scaffold length (Mb) 1.49 2.53

N50 sizes are calculated based on the size of Hs14 in build 19 of the human reference
genome, which is 88 289 540 bp.

Quake to correct reads. We then ran SHERA to merge reads from
the 180 bp fragment library, and as before, we used Quake to correct
reads before assembly.

As Table 3 shows, using FLASH to merge reads produced much
larger contigs and scaffolds than both the original assembly and the
assembly that used SHERA to merge reads. The improvements over
the original assembly were particularly dramatic: the contig N50
size increased >5-fold, and scaffold N50 size increased 4-fold.

To check the correctness of the read merging algorithm, we used
Bowtie (Langmead et al., 2009) to map the merged and non-merged
read pairs to the finished S.aureus genome. As shown in Table 4,
FLASH correctly processed 90.8% of the reads versus 80.4% for
SHERA. The larger number of incorrectly merged pairs is probably
the explanation for the poorer genome assembly results (Table 3).

We also compared the accuracy of the assemblies generated by
SOAPdenovo with and without merging read pairs. To evaluate
accuracy, we used the nucmer program from the MUMmer package
(Kurtz it et al., 2004) to map all contigs at least 200 bp long to the
reference genome. We considered a contig correct if it mapped with
at least 98% identity over 98% of its length. For both assemblies,
six contigs failed to map correctly. Thus, there was no difference in
correctness while the FLASH-assisted assembly contained far larger
contigs.

3.4.2 Assembly of human chromosome 14 For the second
assembly comparison, we used three paired-end libraries from
the human sequence NA12878 (SRA024407) sequenced at the
Broad Institute (Gnerre et al., 2011). The reads were selected
by using Bowtie to map the reads from NA12878 onto the
entire human genome, and then selecting only those pairs that
mapped to chromosome 14. The mapping yielded 18252400
pairs in the 180bp fragment library, 11334704 pairs in the
3000 bp library and 1202532 pairs in the 35kb library. All reads
are 101 bp long. The chromosome 14 reads are available from
http://gage.cbcb.umd.edu/data/index.html.

Table 7. Accuracy of contigs in assemblies of human chromosome 14

SOAPdenovo FLASH plus CABOG FLASH
only only plus
SOAPdenovo CABOG
Total 46264 42751 3674 1899
contigs
Correct 45215 41779 3184 1588
contigs
Incorrect 1049 972 490 311
contigs

All contigs <200 bp were used for the evaluation.

As with the assembly of S.aureus, we used Quake with a k-mer
size of 18 to correct all reads, and used the corrected reads from three
paired-end libraries in the assembly by SOAPdenovo and CABOG.

We then merged reads in the 180 bp library using FLASH, which
yielded 17047292 extended reads. Note that this was a far higher
percentage of the library than were merged in the S.aureus data; this
is likely due to the fact that the distribution of fragment lengths in
the human data was much tighter (Fig. 1), making more fragment
lengths fall within the detectable overlap range of FLASH.

The assembly results are shown in Tables 5 and 6. As with
S.aureus, the assembly that used merged reads from FLASH
outperformed the assembly that used the original reads in every
category regardless of the assembler used to assemble the genome.
The CABOG assembly had far larger contigs and scaffolds than the
SOAPdenovo assembly, and the improvements from FLASH were
also much more striking: the contig N50 size more than doubled,
and the scaffold N50 size tripled.

We then mapped the merged and non-merged reads to the
reference genome to measure how many had been correctly
processed. FLASH’s results were very similar to those for S.aureus,
handling 91% of pairs correctly as before. Failure to merge reads
again accounted for a large majority of its mistakes: 1.1 million pairs
were left separate although they overlapped sufficiently for merging.
Over 16 million pairs were correctly merged while 572 622 pairs
were merged incorrectly.

Finally, we compared the accuracy of the assemblies that used
FLASH as a preprocessor to those that did not. Note that these are
de novo human assemblies, constructed without use of the reference
human genome. Comparative assemblies, which typically have far
larger contigs than de novo assemblies, might not show as great a
difference if FLASH was used.
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Fig. 7. Illustration of how exact tandem repeats might be collapsed. A and B represent unique sequences flanking R, which is a tandem repeat. On the left
(a), R contains multiple identical copies of a the same subsequence. At the top (i) is the original fragment, and just below that (ii) are the two overlapping
reads sequenced from each end. The best overlap on the left (iii), shows that the reads overlap too much, which collapses R, eliminating one or more copies
of the repeat (iv). On the right (b), the copies are not identical. D is a sequence (as short as one base) that makes one tandem copy different from the others.

As a result, the best overlap (iii) produces the correctly merged reads (iv).

As above, we considered a contig to be correct if 98% of its length
aligned to the genome with at least 98% identity. Table 7 shows the
results for assemblies by both SOAPdenovo and CABOG.

As shown in Table 7, using FLASH as a preprocessor for genome
assembly not only improved the assembly by producing fewer, larger
contigs, but it also reduced the number of erroneous contigs for
both SOAPdenovo and CABOG. This also shows that FLASH is
not limited to just one assembler, and suggests that it would be a
useful adjunct to standard assembly pipelines.

3.5 Difficulties with tandem repeats

Merging reads from opposite ends of a short fragment can run into
problems when the fragment contains short tandem repeats. If the
overlapping regions contains nothing else, the two reads might be
merged too aggressively, collapsing the repeat region into fewer
copies than are actually present in the fragment. While exact tandem
repeats might cause problem for FLASH, non-exact tandem repeats
should be resolved easily.

The Figure 7 illustrates the problem. Figure 7a (i) shows the
original fragment, with unique sequences A and B flanking a region
R that contains multiple copies of a short tandem repeat. The left
part of the figure illustrates the situation when the tandem repeats
are identical, while the right-hand side shows what happens when
the repeats contain some variation. As shown in Figure 7a (iii),
the best overlap might be too short when the repeats are exact,
leading FLASH to collapse the repeat region slightly. This problem
only arises when the repeats are exact. If R is shorter than the read
length, then some reads will contain R entirely, allowing a genome
assembler to resolve it correctly.

4 CONCLUSION

The short read lengths generated by next-generation sequencing
technologies are the biggest challenge in assembling genomes

into large, near-complete sequences. To tackle this problem, we
developed FLASH, a highly accurate, very fast tool to merge pairs
generated by sequencing both ends of short fragment libraries.
FLASH can be used for any paired-end sequence data in which
the paired reads overlap, including RNA-seq data. As shown in
our experiments, merging paired reads with FLASH can have a
significant positive impact on the quality of genome assemblies.
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