

S. Canzar¹ K. Elbassioni² G. W. Klau¹ J. Mestre³

Tree-Constrained Matching

¹ Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

ICALP'11

² Max-Planck Institut für Informatik, Saarbrücken, Germany

³ The University of Sydney, Australia

Given live cell video, we want to track individual cells

Analysis of Live Cell Video

Given live cell video, we want to track individual cells

Segmentation based methods:

Analysis of Live Cell Video

Given live cell video, we want to track individual cells

Segmentation based methods:

1. Perform image segmentation for each frame

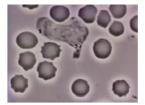
Analysis of Live Cell Video

Generalization

Given live cell video, we want to track individual cells

Segmentation based methods:

1. Perform image segmentation for each frame

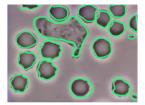


Analysis of Live Cell Video

Given live cell video, we want to track individual cells

Segmentation based methods:

1. Perform image segmentation for each frame

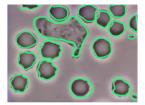


Analysis of Live Cell Video

Given live cell video, we want to track individual cells

Segmentation based methods:

- 1. Perform image segmentation for each frame
- 2. Match segments from adjacengt frames

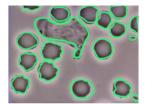


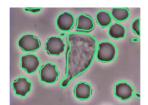
Analysis of Live Cell Video

Given live cell video, we want to track individual cells

Segmentation based methods:

- 1. Perform image segmentation for each frame
- 2. Match segments from adjacengt frames



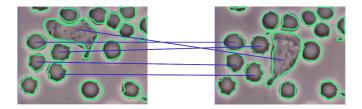


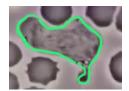
Analysis of Live Cell Video

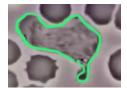
Given live cell video, we want to track individual cells

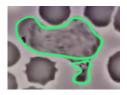
Segmentation based methods:

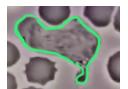
- 1. Perform image segmentation for each frame
- 2. Match segments from adjacengt frames

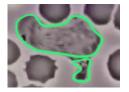


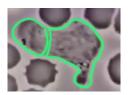


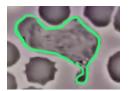


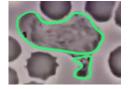


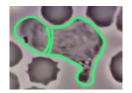




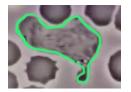


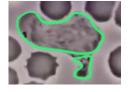


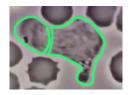




Challenge: Biological cell division vs. over-segmentation







Challenge: Biological cell division vs. over-segmentation

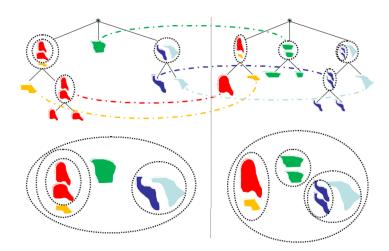
⇒ [Mosig et al., 2009]: Integrate identification and tracking steps!

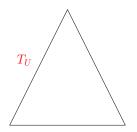
S. Canzar

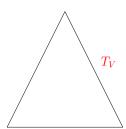
Motivation

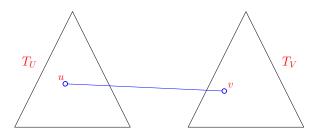
Tree-Constrained Matching

Cosegmentation

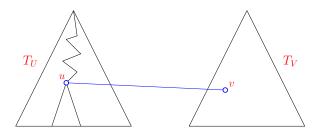




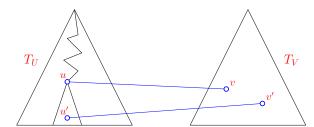


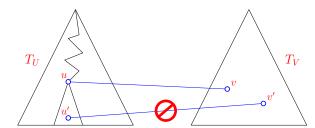


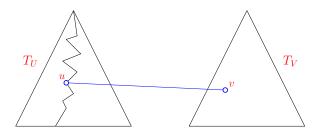
4-approximation



4-approximation

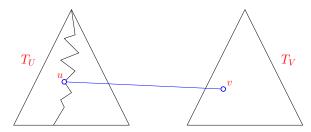




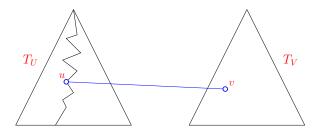


4-approximation

Tree-Constrained Matching

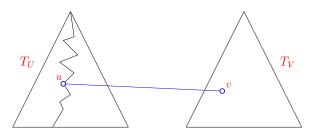


Given a weighted bipartite graph (U, V, E) and trees T_U and T_V over U and V, we want maximum weight matching M such that matched vertices in T_U and T_V are not comparable



Given a weighted bipartite graph (U, V, E) and trees T_U and T_V over U and V, we want maximum weight matching M such that matched vertices in T_U and T_V are not comparable

Mosig *et al.* introduced TCM and gave a LP formulation, which they claimed was totally unimodular



Given a weighted bipartite graph (U, V, E) and trees T_U and T_V over U and V, we want maximum weight matching M such that matched vertices in T_U and T_V are not comparable

Mosig *et al.* introduced TCM and gave a LP formulation, which they claimed was totally unimodular

Unfortunately, as we shall see, this is not the case

MIS in d-Interval Graphs

There is a reduction from TCM to MIS in 2-interval graphs

There is a reduction from TCM to MIS in 2-interval graphs

A *d*-interval is
$$u = \{[s_1, f_1], [s_2, f_2], \dots, [s_d, f_d]\}$$

MIS in d-Interval Graphs

There is a reduction from TCM to MIS in 2-interval graphs

A *d*-interval is
$$u = \{[s_1, f_1], [s_2, f_2], \dots, [s_d, f_d]\}$$

A d-interval graph is the intersection graph of a set of d-intervals

MIS in d-Interval Graphs

There is a reduction from TCM to MIS in 2-interval graphs

A *d*-interval is
$$u = \{[s_1, f_1], [s_2, f_2], \dots, [s_d, f_d]\}$$

A d-interval graph is the intersection graph of a set of d-intervals

Maximum weight independent set (MIS) in d-interval graphs:

- If d=1, there is an exact algorithm
- [BHNSS] If d > 1, the problem is APX-hard, but there is a 2d-approximation

MIS in d-Interval Graphs

There is a reduction from TCM to MIS in 2-interval graphs

A *d*-interval is
$$u = \{[s_1, f_1], [s_2, f_2], \dots, [s_d, f_d]\}$$

A d-interval graph is the intersection graph of a set of d-intervals

Maximum weight independent set (MIS) in d-interval graphs:

- If d=1, there is an exact algorithm
- [BHNSS] If d > 1, the problem is APX-hard, but there is a 2d-approximation

Thus, there is a 4-approximation for TCM

Our Results

Motivation

Show that TCM is APX-hard and disprove claim of Mosig et al.

Our Results

Show that TCM is APX-hard and disprove claim of Mosig et al.

Bar-Yehuda et al. algorithm is in fact a 3-approximation for TCM

Our Results

Motivation

Show that TCM is APX-hard and disprove claim of Mosig et al.

Bar-Yehuda et al. algorithm is in fact a 3-approximation for TCM

Give 2-approximation, matching integrality gap of LP formulation

Motivation

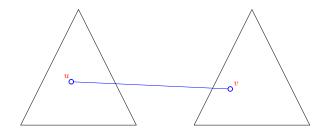
Generalization

Show that TCM is APX-hard and disprove claim of Mosig *et al.*Bar-Yehuda *et al.* algorithm is in fact a 3-approximation for TCM

Give 2-approximation, matching integrality gap of LP formulation

Generalization to posets

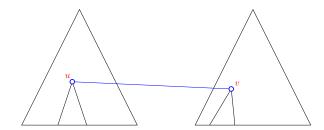
Every edge (u, v) is assigned one interval in T_U and one in T_V



S. Canzar

Reducing TCM to MIS in 2-IG

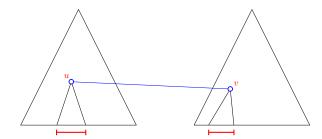
Every edge (u, v) is assigned one interval in T_U and one in T_V



S. Canzar

Reducing TCM to MIS in 2-IG

Every edge (u, v) is assigned one interval in T_U and one in T_V

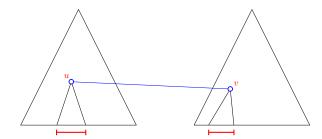


S. Canzar

Tree-Constrained Matching

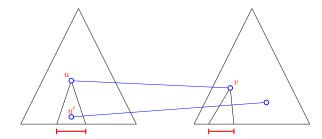
Reducing TCM to MIS in 2-IG

Every edge (u, v) is assigned one interval in T_U and one in T_V Matching is feasible ⇔ corresp. set of 2-intervals is independent



S. Canzar

Every edge (u, v) is assigned one interval in T_U and one in T_V Matching is feasible ⇔ corresp. set of 2-intervals is independent

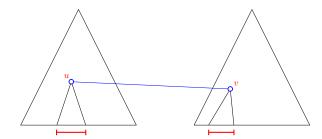


S. Canzar

Motivation

Reducing TCM to MIS in 2-IG

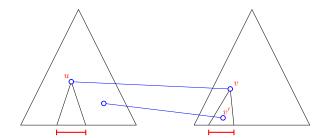
Every edge (u, v) is assigned one interval in T_U and one in T_V Matching is feasible ⇔ corresp. set of 2-intervals is independent



S. Canzar

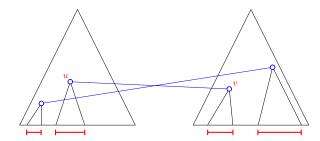
Reducing TCM to MIS in 2-IG

Every edge (u, v) is assigned one interval in T_U and one in T_V Matching is feasible \Leftrightarrow corresp. set of 2-intervals is independent



S. Canzar

Every edge (u, v) is assigned one interval in T_U and one in T_V Matching is feasible ⇔ corresp. set of 2-intervals is independent



S. Canzar

Motivation

Bar-Yehuda et al. algorithm

$$\max \sum_{u \in V} x_u$$
 s.t. $\sum_{u: p \in u} x_u \leq 1 \quad \forall \text{ point } p$
$$x_u \geq 0 \qquad \forall d\text{-interval } u$$

Bar-Yehuda et al. algorithm

$$\max \sum_{u \in V} x_u$$
 s.t. $\sum_{u: p \in u} x_u \leq 1 \quad \forall \text{ point } p$ $x_u \geq 0 \qquad \forall d\text{-interval } u$

MIS-d-interval(G)

- 1: let x be optimal LP solution
- 2: let S be the empty set
- 3: while G is not empty do
- 4: let u minimize x(N(u))
- 5: add μ to S
- 6: remove N(u) + u from G
- 7: return S

CWI

$$\forall$$
 feasible x : $\exists u : x(N(u)) \leq 2d$

$$\sum_{u} x_{u} \sum_{v \in N(u)} x_{v}$$

S. Canzar

4-approximation

Generalization

\forall feasible x: $\exists u : x(N(u)) \leq 2d$

$$\sum_{u} x_{u} \sum_{v \in N(u)} x_{v}$$

S. Canzar

Motivation

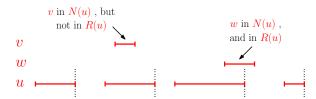
 \forall feasible x: $\exists u : x(N(u)) \leq 2d$

$$\sum_{u} x_{u} \sum_{v \in N(u)} x_{v}$$

$$v$$
 in $N(u)$, but not in $R(u)$
 v
 w
 u
 v

 \forall feasible x: $\exists u : x(N(u)) \leq 2d$

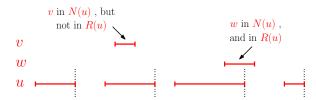
$$\sum_{u} x_{u} \sum_{v \in N(u)} x_{v}$$



Generalization

\forall feasible x: $\exists u : x(N(u)) \leq 2d$

$$\sum_{u} x_{u} \sum_{v \in N(u)} x_{v} \leq 2 \sum_{u} x_{u} \sum_{v \in R(u)} x_{v}$$



S. Canzar

Motivation

Generalization

\forall feasible x: $\exists u : x(N(u)) \leq 2d$

$$\sum_{u} x_{u} \sum_{v \in N(u)} x_{v} \leq 2 \sum_{u} x_{u} \sum_{v \in R(u)} x_{v}$$

$$\leq 2 \sum_{u} x_{u} d$$

S. Canzar

\forall feasible x: $\exists u : x(N(u)) \leq 2d$

$$\sum_{u} x_{u} \sum_{v \in N(u)} x_{v} \leq 2 \sum_{u} x_{u} \sum_{v \in R(u)} x_{v}$$

$$\leq 2 \sum_{u} x_{u} d$$

$$\leq 2d \sum_{u} x_{u}$$

S. Canzar

Motivation

4-approximation

4-approximation for TCM

$$\begin{array}{ll} \max & \sum_{e \in E} x_e \\ \text{s.t.} & \sum_{e \text{ on } P} x_e \leq 1 \quad \forall \mathsf{desc. path } P \\ & x_e \geq 0 \qquad \quad \forall \text{ edge } e \end{array}$$

Generalization

4-approximation for TCM

$$\begin{array}{ll} \max \; \sum_{e \in E} x_e \\ \text{s.t.} \; \sum_{e \; \text{on} \; P} x_e \leq 1 \quad \forall \text{desc. path } P \\ x_e \geq 0 \qquad \qquad \forall \; \text{edge} \; e \end{array}$$

TCM(U,V,E)

- 1: let x be optimal LP solution
- 2: let \mathcal{M} be the empty set
- 3: while *E* is not empty do
- let e minimize x(N(e))
- 5: add e to \mathcal{M}
- 6: remove N(e) + e from E
- 7: return M

Generalization

4-approximation for TCM

$$\max \sum_{e \in E} x_e$$
 TCM(U,V,E)

s.t.
$$\sum_{e \text{ on } P} x_e \le 1 \quad \forall \text{desc. path } P$$

$$x_e \ge 0 \quad \forall \text{ edge } e$$

$$1: \text{ let } x \text{ be optimal LP solution}$$

$$2: \text{ let } \mathcal{M} \text{ be the empty set}$$

$$3: \text{ while } E \text{ is not empty } \text{ do}$$

$$4: \text{ let } e \text{ minimize } x(N(e))$$

$$5: \text{ add } e \text{ to } \mathcal{M}$$

$$6: \text{ remove } N(e) + e \text{ from } E$$

$$7: \text{ return } \mathcal{M}$$

For ease of analysis, assume that

- For all edges $x_e > 0$
- No leaf is unmatched

Generalization

\forall basic feasible x: $\exists e : x(N(e)) \leq 3$

For ease of analysis, assume that

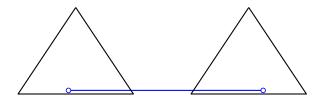
- For all edges $x_e > 0$
- No leaf is unmatched

If we have a leaf-to-leaf edge, we are done

For ease of analysis, assume that

- For all edges $x_e > 0$
- No leaf is unmatched

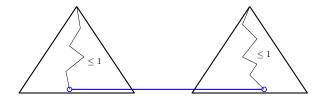
If we have a leaf-to-leaf edge, we are done



For ease of analysis, assume that

- For all edges $x_e > 0$
- No leaf is unmatched

If we have a leaf-to-leaf edge, we are done

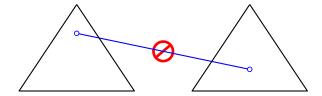


For ease of analysis, assume that

- For all edges $x_e > 0$
- No leaf is unmatched

If we have a leaf-to-leaf edge, we are done

Otherwise, no internal-to-internal edges



S. Canzar

4-approximation

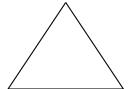
\forall basic feasible x: $\exists e : x(N(e)) \leq 3$

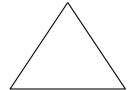
For ease of analysis, assume that

- For all edges $x_e > 0$
- No leaf is unmatched

If we have a leaf-to-leaf edge, we are done

Otherwise, no internal-to-internal edges





Generalization

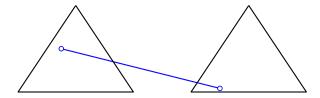
\forall basic feasible x: $\exists e : x(N(e)) \leq 3$

For ease of analysis, assume that

- For all edges $x_e > 0$
- No leaf is unmatched

If we have a leaf-to-leaf edge, we are done

Otherwise, no internal-to-internal edges



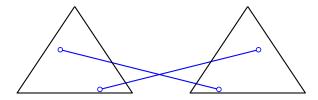
S. Canzar

For ease of analysis, assume that

- For all edges $x_e > 0$
- No leaf is unmatched

If we have a leaf-to-leaf edge, we are done

Otherwise, no internal-to-internal edges

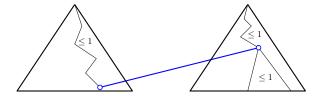


For ease of analysis, assume that

- For all edges $x_e > 0$
- No leaf is unmatched

If we have a leaf-to-leaf edge, we are done

Otherwise, no internal-to-internal edges



S. Canzar

Some comments

Motivation

We don't need to find bfs at each step

We don't need to find bfs at each step

We can handle weighted MIS by using fractional local ratio (FLR)

S. Canzar

We don't need to find bfs at each step

We can handle weighted MIS by using fractional local ratio (FLR)

There are instances where every edge has FLR 3 - o(1)

We don't need to find bfs at each step

We can handle weighted MIS by using fractional local ratio (FLR)

There are instances where every edge has FLR 3 - o(1)

But we can get a 2-approximation with one more idea

Generalization

Some comments

Motivation

We don't need to find bfs at each step

We can handle weighted MIS by using fractional local ratio (FLR)

There are instances where every edge has FLR 3 - o(1)

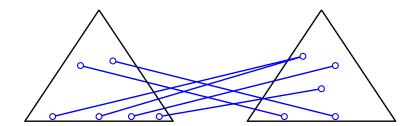
But we can get a 2-approximation with one more idea

Integrality gap of LP formulation is 2 - o(1)

14

2-approximation

Idea: Exploit bfs structure if $\forall e : x(N(e)) > 2$

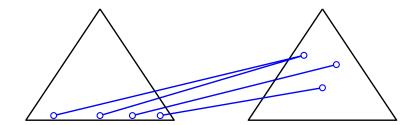


S. Canzar Tree-Constrained Matching

2-approximation

Motivation

Idea: Exploit bfs structure if $\forall e : x(N(e)) > 2$

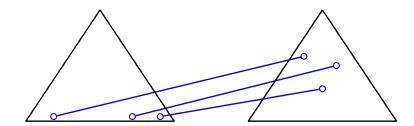


S. Canzar

2-approximation

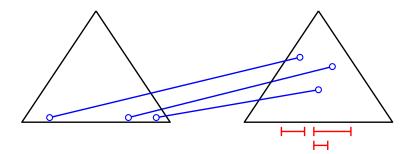
Motivation

Idea: Exploit bfs structure if $\forall e : x(N(e)) > 2$



S. Canzar

Idea: Exploit bfs structure if $\forall e : x(N(e)) > 2$

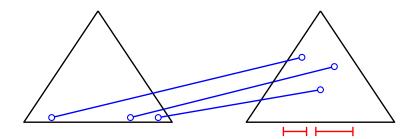


S. Canzar Tree-Constrained Matching 14

14

Motivation

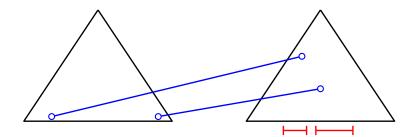
Idea: Exploit bfs structure if $\forall e : x(N(e)) > 2$



S. Canzar Tree-Constrained Matching

2-approximation

Idea: Exploit bfs structure if $\forall e : x(N(e)) > 2$



S. Canzar Tree-Constrained Matching 14

Generalization to posets

To model uncertainty in hierarchical clustering, we can use posets instead of trees

To model uncertainty in hierarchical clustering, we can use posets instead of trees

We want matched vertices to be incomparable

Generalization to posets

To model uncertainty in hierarchical clustering, we can use posets instead of trees

We want matched vertices to be incomparable

Give 4ρ -approximation, where ρ is a parameter of poset

Generalization

Generalization to posets

To model uncertainty in hierarchical clustering, we can use posets instead of trees

We want matched vertices to be incomparable

Give 4ρ -approximation, where ρ is a parameter of poset

It cannot be approximated to $2^{\log^{1-\epsilon}\rho}$, for any $\epsilon > 0$, unless $NP \subset DTIME(n^{p \circ |y| \log n})$

Thank you for your attention!

4-approximation