

S. Canzar¹ K. Elbassioni² A. Elmasry³ R. Raman⁴ On the Approximability of the Maximum Interval Constrained Coloring Problem

¹Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

² Max-Planck-Institut für Informatik, Saarbrücken, Germany

³Datalogisk Institut, University of Copenhagen, Denmark

⁴ DIMAP and Department of Computer Science, University of Warwick, UK

ISAAC'10

- can be determined by X-ray crystal diffraction, NMR, ...
- but limitations! (concentration, conformational changes...)

- can be determined by X-ray crystal diffraction, NMR, ...
- but limitations! (concentration, conformational changes...)

\Rightarrow Exchange of labile hydrogens for deuteriums (HDX)

- can be determined by X-ray crystal diffraction, NMR, ...
- but limitations! (concentration, conformational changes...)
- \Rightarrow Exchange of labile hydrogens for deuteriums (HDX)
- \blacksquare exchange rates as measure of solvent accessibility \rightarrow structure!

- can be determined by X-ray crystal diffraction, NMR, ...
- but limitations! (concentration, conformational changes...)
- \Rightarrow Exchange of labile hydrogens for deuteriums (HDX)
- exchange rates as measure of solvent accessibility \rightarrow structure!
- monitored by mass spectrometry (MS) (NMR limited)

- can be determined by X-ray crystal diffraction, NMR, ...
- but limitations! (concentration, conformational changes...)
- \Rightarrow Exchange of labile hydrogens for deuteriums (HDX)
- lacksim exchange rates as measure of solvent accessibility ightarrow structure!
- monitored by mass spectrometry (MS) (NMR limited)
- output: aggregate exchange data for peptic fragments

- can be determined by X-ray crystal diffraction, NMR, ...
- but limitations! (concentration, conformational changes...)
- \Rightarrow Exchange of labile hydrogens for deuteriums (HDX)
- lacksim exchange rates as measure of solvent accessibility ightarrow structure!
- monitored by mass spectrometry (MS) (NMR limited)
- output: aggregate exchange data for peptic fragments

\Rightarrow Increase resolution from fragments to single residues!

Problem Illustration

G R Y R G Y R R Y 1 2 3 4 5 6 7 8 9

Problem Illustration

Problem Illustration

• Protein of *n* residues \mapsto Set V = [n]

- Protein of *n* residues \mapsto Set V = [n]
- Peptic fragments \longmapsto Set $\mathcal I$ of intervals defined on V

- Protein of *n* residues \mapsto Set V = [n]
- Peptic fragments \longmapsto Set $\mathcal I$ of intervals defined on V
- H/D exchange rates \mapsto Set of color classes [k]

- Protein of *n* residues \mapsto Set V = [n]
- Peptic fragments \longmapsto Set $\mathcal I$ of intervals defined on V
- H/D exchange rates \mapsto Set of color classes [k]
- Requirement function $r:\mathcal{I} \times [k] \mapsto \mathbb{N}$

- Protein of *n* residues \mapsto Set V = [n]
- Peptic fragments \longmapsto Set $\mathcal I$ of intervals defined on V
- H/D exchange rates \mapsto Set of color classes [k]
- Requirement function $r:\mathcal{I} imes [k] \mapsto \mathbb{N}$

Feasibility

 \mathcal{I} is *feasible* or *colorable* if there exists a coloring $\chi : V \mapsto [k]$ such that for every $l \in \mathcal{I}$ we have $|\{j \in l \mid \chi(j) = c\}| = r(l, c)$.

- Protein of *n* residues \mapsto Set V = [n]
- Peptic fragments \longmapsto Set $\mathcal I$ of intervals defined on V
- H/D exchange rates \mapsto Set of color classes [k]
- Requirement function $r:\mathcal{I} \times [k] \mapsto \mathbb{N}$

Feasibility

 \mathcal{I} is *feasible* or *colorable* if there exists a coloring $\chi : V \mapsto [k]$ such that for every $l \in \mathcal{I}$ we have $|\{j \in l \mid \chi(j) = c\}| = r(l, c)$.

MAXFEASIBLECOLORING (MFC)

Given non-negative weights $w : \mathcal{I} \mapsto \mathbb{R}_+$, find a maximum weight colorable subset $\mathcal{I}' \subseteq \mathcal{I}$.

Previous Results & Contribution

- [Althaus et al. SAC'08]: ILP formulation, polynomial for k = 2
- [Althaus et al. SWAT'08]:
 - $\mathcal{NP}\text{-hard}$ in general
 - ± 1 violation by LP rounding
 - $(1+\epsilon)$ violation in quasi-polynomial time
- [Byrka et al. LATIN'10]: \mathcal{NP} -hard/ \mathcal{APX} -hard for k = 3
- [Komusiewicz et al. CPM'09] Fixed-parameter tractable w.r.t. max. interval length, max. no. of intervals containing a vertex.

Previous Results & Contribution

- [Althaus et al. SAC'08]: ILP formulation, polynomial for k = 2
- [Althaus et al. SWAT'08]:
 - $\mathcal{NP}\text{-hard}$ in general
 - ± 1 violation by LP rounding
 - $(1+\epsilon)$ violation in quasi-polynomial time
- [Byrka et al. LATIN'10]: \mathcal{NP} -hard/ \mathcal{APX} -hard for k = 3
- [Komusiewicz et al. CPM'09] Fixed-parameter tractable w.r.t. max. interval length, max. no. of intervals containing a vertex.

Our Results

- $O(\sqrt{|OPT|})$ -approximation algorithm (for constant k)
- MFC is APX-hard for k = 2 (reduction from MAX2SAT)

Approximation Algorithm

ldea

Trim solution space and show it still contains a "good" solution.

Approximation Algorithm

ldea

Trim solution space and show it still contains a "good" solution.

(i) Solve easier problem variants optimally:

Approximation Algorithm

ldea

Trim solution space and show it still contains a "good" solution.

(i) Solve easier problem variants optimally:

(ii) Pick best (combined) solution

Consider partially ordered set (\mathcal{P}, \preceq) :

Consider partially ordered set (\mathcal{P}, \preceq) :

Consider partially ordered set (\mathcal{P}, \preceq) :

Consider partially ordered set (\mathcal{P}, \preceq) :

Observation: $\mathcal{I}' \subseteq \mathcal{I}$ is a feasible tower iff it is a chain in \mathcal{P}

Consider partially ordered set (\mathcal{P}, \preceq) :

Observation: $\mathcal{I}' \subseteq \mathcal{I}$ is a feasible tower iff it is a chain in \mathcal{P}

 \Rightarrow Find a maximum-weight chain in \mathcal{P} (in polynomial time)!

Introduction 0000 Approximation 00000

Optimal Staircase

 $|\{v \in I_{\alpha} \mid \chi(v) = c\}| = |\{v \in I_{\alpha} \mid \chi'(v) = c\}|, \text{ for all colors } c.$

 $D[t', \bar{\mathbf{r}}(l_{\alpha})] :=$ weight of optimal solution from l_1 to $l_{t'}$ that can be satisfied by coloring satisfying $\bar{\mathbf{r}}$ on l_{α}

 $|\{v \in I_{\alpha} \mid \chi(v) = c\}| = |\{v \in I_{\alpha} \mid \chi'(v) = c\}|, \text{ for all colors } c.$

 $D[t', \overline{\mathbf{r}}(I_{\alpha})] :=$ weight of optimal solution from I_1 to $I_{t'}$ that can be satisfied by coloring satisfying $\overline{\mathbf{r}}$ on I_{α}

 \Rightarrow DP: guess predecessor $I_{t'}$ and "coloring" on I_{α}

Define Poset $\mathcal{P} = (OPT, \subseteq)$.

Dilworth Theorem

There is either a chain or an anti-chain in ${\mathcal P}$ of weight at least

 $\frac{w(OPT)}{2\sqrt{|OPT|}}.$

Define Poset
$$\mathcal{P} = (OPT, \subseteq)$$
.

Dilworth Theorem

There is either a chain or an anti-chain in ${\mathcal P}$ of weight at least

 $\frac{w(OPT)}{2\sqrt{|OPT|}}.$

• chain (= *tower*):

Define Poset
$$\mathcal{P} = (OPT, \subseteq)$$
.

Dilworth Theorem

There is either a chain or an anti-chain in $\mathcal P$ of weight at least

 $\frac{w(OPT)}{2\sqrt{|OPT|}}.$

- chain (= tower): √
- anti-chain:

Define Poset
$$\mathcal{P} = (OPT, \subseteq)$$
.

Dilworth Theorem

There is either a chain or an anti-chain in $\ensuremath{\mathcal{P}}$ of weight at least

 $\frac{w(OPT)}{2\sqrt{|OPT|}}.$

- chain (= tower): √
- anti-chain: can be partitioned into 2 sets of independent staircases √

Define Poset
$$\mathcal{P} = (OPT, \subseteq)$$
.

Dilworth Theorem

There is either a chain or an anti-chain in $\ensuremath{\mathcal{P}}$ of weight at least

 $\frac{w(OPT)}{2\sqrt{|OPT|}}.$

- chain (= tower): √
- anti-chain: can be partitioned into 2 sets of independent staircases √

 \Rightarrow feasible set of weight at least $\frac{w(OPT)}{4\sqrt{|OPT|}}$

Algorithm

Algorithm 1 MFCAPPROX(V, \mathcal{I}, r, w)

1:
$$W_1 = \max_{\text{Tower } \mathcal{I}'} w(\mathcal{I}')$$

2: for every $u, v \in V$ s.t. $u < v$ do
3: $w'_{u,v} = \max_{\text{Staircase}(u,v) \mathcal{I}'} w(\mathcal{I}')$
4: end for
5: Let $W_2 = \max_{\text{Indep.set } \mathcal{I}' \subseteq \{[u,v]: u, v \in V, u < v\}} w'(\mathcal{I}')$
6: return $\max\{W_1, W_2\}$

Open Questions

- Improve $\mathcal{O}(\sqrt{OPT})$ -approximation or hardness?
- Approximation if k part of the input?