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Introduction Approximation Open Questions

Motivation

can be determined by X-ray
crystal di�raction, NMR, ...

but limitations! (concentration,
conformational changes. . . )

⇒ Exchange of labile hydrogens for deuteriums (HDX)

exchange rates as measure of solvent accessibility → structure!

monitored by mass spectrometry (MS) (NMR limited)

output: aggregate exchange data for peptic fragments

⇒ Increase resolution from fragments to single residues!
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Introduction Approximation Open Questions

Problem Illustration

G R Y R G Y R R Y
1 2 3 4 5 6 7 8 9

Experiments

[1, 5] −− (2, 2, 1)

[3, 7] −− (2, 1, 2)

[6, 8] −− (2, 0, 1)

[5, 9] −− (2, 1, 2)

feasible
assignment
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Introduction Approximation Open Questions

Mathematical Abstraction

Protein of n residues 7−→ Set V = [n]

Peptic fragments 7−→ Set I of intervals de�ned on V

H/D exchange rates 7−→ Set of color classes [k]

Requirement function r : I × [k] 7→ N

Feasibility

I is feasible or colorable if there exists a coloring χ : V 7→ [k] such
that for every I ∈ I we have |{j ∈ I | χ(j) = c}| = r(I , c).

MaxFeasibleColoring (MFC)

Given non-negative weights w : I 7→ R+, �nd a maximum weight
colorable subset I ′ ⊆ I.
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Introduction Approximation Open Questions

Previous Results & Contribution

[Althaus et al. SAC'08]: ILP formulation, polynomial for k = 2

[Althaus et al. SWAT'08]:

� NP-hard in general

� ±1 violation by LP rounding

� (1 + ε) violation in quasi-polynomial time

[Byrka et al. LATIN'10]: NP-hard/APX -hard for k = 3

[Komusiewicz et al. CPM'09] Fixed-parameter tractable w.r.t.
max. interval length, max. no. of intervals containing a vertex.

Our Results

O(
√
|OPT |)-approximation algorithm (for constant k)

Mfc is APX -hard for k = 2 (reduction from Max2SAT)
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Introduction Approximation Open Questions

Approximation Algorithm

Idea

Trim solution space and show it still contains a �good� solution.

(i) Solve easier problem variants optimally:

a) Tower b) Staircase

(ii) Pick best (combined) solution
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Introduction Approximation Open Questions

Optimal Tower

Consider partially ordered set (P,�):

a2 b2

a1 b1

(2, 3)

(3, 5)

I1

I2

I1 � I2 ⇐⇒
(−a1, 2, 3, b1) ≤ (−a2, 3, 5, b2)

Observation: I ′ ⊆ I is a feasible tower i� it is a chain in P

⇒ Find a maximum-weight chain in P (in polynomial time)!
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Introduction Approximation Open Questions

Optimal Staircase

I1

It′

I` χ′}

|{v ∈ Iα | χ(v) = c}| = |{v ∈ Iα | χ′(v) = c}|, for all colors c .

D[t ′, r̄(Iα)] := weight of optimal solution from I1 to It′ that

can be satis�ed by coloring satisfying r̄ on Iα

⇒ DP: guess predecessor It′ and �coloring� on Iα
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Introduction Approximation Open Questions

Putting it all together

De�ne Poset P = (OPT ,⊆).

Dilworth Theorem

There is either a chain or an anti-chain in P of weight at least

w(OPT )

2
√
|OPT |

.

chain (= tower): X

anti-chain: can be partitioned into 2 sets of independent
staircases X

⇒ feasible set of weight at least w(OPT )

4

√
|OPT |
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Introduction Approximation Open Questions

Independent Set of Staircases

u v
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Introduction Approximation Open Questions

Algorithm

Algorithm 1 MfcApprox(V , I, r ,w)

1: W1 = maxTower I′ w(I ′)
2: for every u, v ∈ V s.t. u < v do

3: w ′u,v = maxStaircase(u,v) I′ w(I ′)
4: end for

5: Let W2 = maxIndep.set I′⊆{[u,v ]:u,v∈V , u<v} w
′(I ′)

6: return max{W1,W2}
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Introduction Approximation Open Questions

Open Questions

Improve O(
√
OPT )-approximation or hardness?

Approximation if k part of the input?
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