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Introduction Model (iii) Model (ii) Model (i) Experiments Tree Matching Plant Breeding

Motivation

can be determined by X-ray
crystal di�raction, NMR, ...

but limitations! (concentration,
conformational changes. . . )

⇒ Exchange of labile hydrogens for deuteriums (HDX)

exchange rates as measure of solvent accessibility → structure!

monitored by mass spectrometry (MS) (NMR limited)

output: aggregate exchange data for peptic fragments

⇒ Increase resolution from fragments to single residues!
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Hydrogens in Proteins
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H/D Exchange + MS

(F : 20,M : 14, S : 5)

MS

(F1 : 5,M1 : 2, S1 : 0)

(Fk : 2,Mk : 5, Sk : 3)

(F2 : 4,M2 : 4, S2 : 2)

MS

Fit to 3-comp. model

⇒ (F : 20, M : 14, S : 5)
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Problem Illustration

G R Y R G Y R R Y
1 2 3 4 5 6 7 8 9

Experiments

[1, 5] −− (2, 2, 1)

[3, 7] −− (2, 1, 2)

[6, 8] −− (2, 0, 1)

[5, 9] −− (2, 1, 2)

feasible
assignment
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Mathematical Abstraction

Protein of n residues 7−→ Set V = [n]

Peptic fragments 7−→ Set I of intervals de�ned on V

H/D exchange rates 7−→ Set of color classes [k]

Requirement function r : I × [k] 7→ N where

r(I , 1) + · · ·+ r(I , k) = |I |

IntervalConstrainedColoring

Is there a feasible coloring, i.e. a function χ : V 7→ [k] such that for
every I ∈ I and all c ∈ [k] we have |{j ∈ I | χ(j) = c}| = r(I , c)?
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An ILP Formulation

Variables:

xi ,j :=

{
1 if residue i has exchange rate j

0 otherwise.

Constraints:

Each residue i gets exactly one exchange rate:∑
j∈[k]

xi ,j = 1

Each fragment I contains r(I , j) residues exchanging at rate j :∑
i∈I

xi ,j = r(I , j)
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Modeling Measurement Errors

In Practice:

experimental data contain noise

A feasible coloring usually does not exist

⇒ Capture noise in model!

(i) Drop constraint
∑

i∈I xi ,j = r(I , j) and minimize∑
I∈I

∑
j∈[k]
|r(I , j)−

∑
i∈I

xi ,j |

(ii) Assign exchange rates fractionally to residues and round

(iii) Find a maximum (weight) colorable subset I ′ ⊆ I
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Maximum Feasible Coloring

MaxFeasibleColoring (MFC)

Given non-negative weights w : I 7→ R+, �nd a maximum weight
colorable subset I ′ ⊆ I.

Mfc is APX -hard for k = 2 (reduction from Max2SAT)

(1+ ε) violation in quasi-polynomial time

O(
√
|OPT |)-approximation algorithm (for constant k)

Practically irrelevant, but related to

Maximum feasible subsystem problem with 0/1-coe�cients!
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Introduction Model (iii) Model (ii) Model (i) Experiments Tree Matching Plant Breeding

A ±1 Guarantee

# vertices in I colored j is
r(I , j)± 1

Pr[ I is satis�ed ] ≥ c(c+1−Hc−1)
(c+1)!

But: Feasible fractional solution must exist!

Guarantees polynomial delay in enumeration

Stefan Canzar Improving the Resolution of HDX-MS Data 12
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2 Colors without Errors

(3, 2)

1 2 3 4 5 6 7 8 9 10

Two colors 1 and 2 ⇒ Constraint matrix is totally unimodular

Assume r(I , 1) + r(I , 2) = |I |
Feasible coloring x1 su�ces

Stefan Canzar Improving the Resolution of HDX-MS Data 14
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Equivalence to Shortest Paths

Let d(i) denote the number of red vertices left of (and including)
vertex i .

1 1 2 3 3 4 5 6 61

Idea: Add edges such that shortest path lengths from a new source
vertex de�ne a feasible d .
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Constraint Graph Construction

1 1 1 1 1 1 1 1 1 1

1. Number of red vertices can increase by at most one:

d(i + 1) ≤ d(i) + 1

2. Number of red vertices is monotonically increasing:

d(i) ≤ d(i + 1)

3. Fragment I = [i , j ] contains r(I , 1) red vertices:

d(j)− d(i − 1) = r(I , 1)
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2 Colors by Shortest Paths
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Extension to Real-World Instances

2 colors with error: Minimum cost circulation problem (MCS)

NP-hard for k ≥ 3 [Byrka et al. LATIN'10]

Heuristic: Solve MCS and recurse on k − 1

Lagrangian Relaxation: MCS per color!

Real world instances

Cabin, Cytochrome P450, FK506 binding protein, myoglobin

74 ≤ n ≤ 152, 18 ≤ m ≤ 49, k = 3

Optimal solution in < 0.1 second

All optimal solutions with minimal error in < 14 seconds

60%-75% agreement with NMR
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Structural View of FKBP

red = fast
yellow = medium
green = slow
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Analysis of Live Cell Video
with K. Elbassioni, G. Klau, J. Mestre

]
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Analysis of Life Cell Video

Given live cell video, we want to track individual cells

Segmentation based methods:

1. Perform image segmentation for each frame

2. Match segments from adjacengt frames
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Over/under segmentation

Challenge: Biological cell division vs. over-segmentation

⇒ [Mosig et al., 2009]: Integrate identi�cation and tracking steps!
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Cosegmentation
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Tree-Constrained Matching

TU TV

Given a weighted bipartite graph (U,V ,E ) and trees TU and TV

over U and V , we want maximum weight matchingM such that
matched vertices in TU and TV are not comparable

Mosig et al. introduced TCM and gave a LP formulation, which
they claimed was totally unimodular

But...
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Our Results

Tree-Constrained Matching as special case of
maximum independent set in 2-interval graphs

APX -hard, 2-approximation

fractional local ratio and properties of BFS

Generalization to

� posets (uncertainty in clustering): 4ρ-approximation
� k > 2 frames: 2kρ-approximation

dependence on ρ unavoidable
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Plant Breeding
with M. El-Kebir

`Plant breeding is the art and science of changing the genetics of
plants for the bene�t of humankind'

� Common practice ever since mankind moved from
hunting-gathering to farming

� At �rst, simply selection for desirable traits
� Now, we can plan more systematically
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Powdery Mildew in Pepper

Fungal disease incited by Leveillula taurica

Infestations result in sun-scalded fruit and crop loss

Pathogen is resistant to fungicides

⇒ Host plant resistance is desired
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Powdery Mildew in Pepper (cont'd)

Consider only two traits: resistance
and pungency

� Elite line is sweet but susceptible

� Wildtype is resistant but pungent

� Desired is resistant and sweet

Pungency is monogenic

� 0 : pungent
� 1 : sweet

Resistance is polygenic

� 0 : susceptible
� 1 : resistant
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Powdery Mildew in Pepper (cont'd)

Consider only two traits: resistance
and pungency

� Elite line is sweet but susceptible

0 0 0 1

0 0 0 1

� Wildtype is resistant but pungent

1 1 1 0

1 1 1 0

� Desired is resistant and sweet

1 1 1 1

1 1 1 1

Pungency is monogenic

� 0 : pungent
� 1 : sweet

Resistance is polygenic

� 0 : susceptible
� 1 : resistant
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Optimal Schedule

0 0 0 1

0 0 0 1

1 1 1 0

0 0 0 1

1

1 1 1 0

1 1 1 0

1

1 1 1 0

1 1 0 1

2 3

1 1 1 0

1 1 1 1

5 9 82 3

5 9 8

1 1 1 1

1 1 1 1

1 1

4 generations, 4 crossings, 634
individuals

NP-hard
ingredients:

� advanced mathematical
programming techniques

� combinatorial structure
� implicit enumeration
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