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Analysis of Live Cell Video

Given live cell video, we want to track individual cells

Segmentation based methods:

1. Perform image segmentation for each frame

2. Match segments from adjacengt frames
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Over/under segmentation

Challenge: Biological cell division vs. over-segmentation

⇒ [Mosig et al., 2009]: Integrate identi�cation and tracking steps!
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Cosegmentation
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Tree-Constrained Matching

TU TV

Given a weighted bipartite graph (U,V ,E ) and trees TU and TV

over U and V , we want maximum weight matchingM such that
matched vertices in TU and TV are not comparable

Mosig et al. introduced TCM and gave a LP formulation, which
they claimed was totally unimodular

Unfortunately, as we shall see, this is not the case
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MIS in d-Interval Graphs

There is a reduction from TCM to MIS in 2-interval graphs

A d -interval is u = {[s1, f1], [s2, f2], . . . , [sd , fd ]}

A d -interval graph is the intersection graph of a set of d -intervals

Maximum weight independent set (MIS) in d -interval graphs:

If d = 1, there is an exact algorithm

[BHNSS] If d > 1, the problem is APX -hard, but there is a 2d-approximation

Thus, there is a 4-approximation for TCM
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Our Results

Show that TCM is APX-hard and disprove claim of Mosig et al.

Bar-Yehuda et al. algorithm is in fact a 3-approximation for TCM

Give 2-approximation, matching integrality gap of LP formulation

Generalization to posets
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Reducing TCM to MIS in 2-IG

Every edge (u, v) is assigned one interval in TU and one in TV

Matching is feasible ⇔ corresp. set of 2-intervals is independent

u
v
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Bar-Yehuda et al. algorithm

p

max
X
u∈V

xu

s.t.
X

u:p∈∈u

xu ≤ 1 ∀p ∈ R

xu ≥ 0 ∀d-interval u

x(V ′) :=
∑

u∈V ′ xu

MIS-d -interval(G)

1: let x be optimal LP solution
2: let S be the empty set
3: while G is not empty do

4: let u minimize x(N[u])
5: add u to S
6: remove N(u)+u from G

7: return S
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∀ feasible x : ∃u : x(N[u]) ≤ 2d

∑
u

xu

∑
v∈N[u]

xv

≤ 2
∑
u

xu

∑
v∈R(u)

xv

≤ 2
∑
u

xu d

≤ 2d
∑
u

xu

u

w

v
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4-approximation for TCM

max
X
e∈E

xe

s.t.
X

e on P

xe ≤ 1 ∀desc. path P

xe ≥ 0 ∀ edge e

N [e] is the set of

edges in conflict

with e

TCM(U,V,E)

1: let x be optimal LP solution
2: letM be the empty set
3: while E is not empty do

4: let e minimize x(N[e])
5: add e toM
6: remove N[e] + e from E

7: return M
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∀ basic feasible x : ∃e : x(N[e]) ≤ 3

For ease of analysis, assume that

For all edges xe > 0

No leaf is unmatched

If we have a leaf-to-leaf edge, we are done

Otherwise, no internal-to-internal edges
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∀ bfs x : ∃e : x(N[e]) ≤ 3 (cont'd)
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∀ bfs x : ∃e : x(N[e]) ≤ 3 (cont'd)

x(F1) ≥ x(F2)

x(F2) ≥
∑

`∈L(F1)

∑
(u,v)∈F2:

v descendant of `

x(u,v)
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Some comments

We don't need to �nd bfs at each step

We can handle weighted MIS by using fractional local ratio (FLR)

There are instances where every edge has FLR 3− o(1)

But we can get a 2-approximation with one more idea

Integrality gap of LP formulation is 2− o(1)

S. Canzar Tree-Constrained Matching 15



Some comments

We don't need to �nd bfs at each step

We can handle weighted MIS by using fractional local ratio (FLR)

There are instances where every edge has FLR 3− o(1)

But we can get a 2-approximation with one more idea

Integrality gap of LP formulation is 2− o(1)

S. Canzar Tree-Constrained Matching 15



Some comments

We don't need to �nd bfs at each step

We can handle weighted MIS by using fractional local ratio (FLR)

There are instances where every edge has FLR 3− o(1)

But we can get a 2-approximation with one more idea

Integrality gap of LP formulation is 2− o(1)

S. Canzar Tree-Constrained Matching 15



Some comments

We don't need to �nd bfs at each step

We can handle weighted MIS by using fractional local ratio (FLR)

There are instances where every edge has FLR 3− o(1)

But we can get a 2-approximation with one more idea

Integrality gap of LP formulation is 2− o(1)

S. Canzar Tree-Constrained Matching 15



Some comments

We don't need to �nd bfs at each step

We can handle weighted MIS by using fractional local ratio (FLR)

There are instances where every edge has FLR 3− o(1)

But we can get a 2-approximation with one more idea

Integrality gap of LP formulation is 2− o(1)

S. Canzar Tree-Constrained Matching 15



2-approximation

Idea: Exploit bfs structure if ∀e : x(N[e]) > 2
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Integrality gap

} }
k − 1 k − 1

integral: 1

fractional: xe = 1
k
,∀e ⇒ 2− 2

k
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Generalization to posets

To model uncertainty in hierarchical clustering, we can use posets
instead of trees

We want matched vertices to be incomparable

Give 4ρ-approximation, where ρ is a parameter of poset

It cannot be approximated to 2log
1−ε ρ, for any ε > 0, unless

NP ⊆ DTIME (npolylog n)

Independence constraints on perfect graphs
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Thank you

for your

attention!

S. Canzar Tree-Constrained Matching 19


	Motivation
	Problem Overview
	4-approximation
	3-approximation
	2-approximation
	Generalization

