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This study describes an algorithm that ®nds rho-independent transcription
terminators in bacterial genomes and evaluates the accuracy of its predic-
tions. The algorithm identi®es terminators by searching for a common
mRNA motif: a hairpin structure followed by a short uracil-rich region. For
each terminator, an energy-scoring function that re¯ects hairpin stability,
and a tail-scoring function based on the number of U nucleotides and their
proximity to the stem, are computed. A con®dence value can be assigned
to each terminator by analyzing candidate terminators found both within
and between genes, and taking into account the energy and tail scores. The
con®dence is an empirical estimate of the probability that the sequence is a
true terminator. The algorithm was used to conduct a comprehensive
analysis of 12 bacterial genomes to identify likely candidates for
rho-independent transcription terminators. Four of these genomes
(Deinococcus radiodurans, Escherichia coli, Haemophilus in¯uenzae and Vibrio
cholerae) were found to have large numbers of rho-independent termin-
ators. Among the other genomes, most appear to have no transcription ter-
minators of this type, with the exception of Thermotoga maritima. A set of
131 experimentally determined E. coli terminators was used to evaluate the
sensitivity of the method, which ranges from 89 % to 98 %, with
corresponding false positive rates of 2 % and 18 %.
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Introduction

Bacterial genomes are organized into units of
expression that are bounded by sites where tran-
scription of DNA into RNA is initiated and termi-
nated. Regulation of gene expression is often
accomplished by in¯uencing the ef®ciency of these
processes. Transcription termination is a product of
DNA-protein interactions, destabilization of the
transcript complex by structures formed in the
RNA transcript, or a combination of these phenom-
ena (Richardson, 1993; Henkin, 1996). Identi®cation
of sites at which termination events occur, in con-
cert with promotion sites, can provide a basis for
organizing genes into structural and functional
operons.
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One of the mechanisms of transcription termin-
ation in bacteria is rho-independent, or instrinsic,
termination (Farnham & Platt, 1981; Platt, 1986;
Yager & Hippel, 1991; Wilson & Hippel, 1995;
Kroll et al., 1992; Smith et al., 1995). This process
involves the formation of secondary structure in
the mRNA sequence upstream of the termination
site. These structures are distinguished by a
common mRNA motif: a stem-loop structure with
dyadic stem-pairing high in guanine and cytosine
residue content, followed by a uracil-rich stretch of
sequence proximal to the termination site
(Figure 1). A computational approach to identi®-
cation of rho-independent terminators on a geno-
mic scale involves the calculation of at least three
factors:

(1) Stability of the RNA stem-loop structure.
(2) Composition and proximity of the down-

stream U-rich region.
(3) Location and orientation of the terminator

with respect to neighboring genes.
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Figure 1. Model of a rho-independent transcription
terminator.
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Algorithms to detect DNA signals for transcrip-
tional termination developed previously have
treated some but not all of these factors (Brendel &
Trifonov, 1984; Brendel et al., 1986; Carafa et al.,
1990; Blaisdell et al., 1993; Zuker, 1994; Washio
et al., 1998), and have been applied primarily to
E. coli genome sequences.

Here, we describe a system called TransTerm
that ®nds intrinsic terminators in bacterial gen-
omes and evaluates the accuracy of each predic-
tion. Using this algorithm, we conduct a
comprehensive analysis of 12 bacterial genomes in
an attempt to identify all intrinsic terminators in
these genomes.

Methods

The TransTerm algorithm has two stages. First,
it scans the entire genome to ®nd all DNA tem-
plates of mRNA stem-loops (also referred to as
hairpins) with adjacent uracil-rich stretches. For
each hairpin, it computes an energy score (charac-
terizing the stability of the hairpin) and a tail score
(characterizing how many uracil nucleotides are
located at the 30 end of the hairpin). The second
stage of the algorithm analyzes all terminator can-
didates and calculates a con®dence for each one.
This con®dence is an empirical estimate of the
probability that the terminator candidate genuinely
functions as a transcription terminator.

Searching a genome for
terminator candidates

An energy-scoring function was used to charac-
terize the stability of the stem-loop structure. A
hairpin turn is formed by a stem containing comp-
lementary nucleotides, capped by a short loop. In
the stem, the most stable nucleotide pair is G-C,
which is assigned a score gc, and A-U pairs are
given the score au. In RNA there is also a weak
interaction between G and U, which is assigned
the score gu. Other nucleotide pairs do not form
hydrogen bonds and weaken the stem; they are
given the score mm (mismatch). A gap in the base-
pairing structure on either side of the stem weak-
ens it even further, and is scored as gp (only one
gap per hairpin is allowed, given that even one
gap usually produces an unstable hairpin). Long
loops also destabilize hairpins, and each nucleotide
of the loop is assigned score lp.

The energy score for a hairpin is computed by
combining all these scores:

E � gc � x1 � au � x2 � gu � x3 �mm � x4 � gp � x5

� lp � x6 �1�
where x1, x2 and x3 are counts of the G-C, A-U and
G-U nucleotide pairs in the stem, x4 and x5 are the
numbers of mismatches and gaps, and x6 is the
number of nucleotides in the loop. This energy
function is designed to separate hairpins (E < E0)
from non-hairpin structures (E > E0). The optimiz-
ation problem for the parameters gc, au, gu, mm,
gp, and lp can be posed as a linear separability pro-
blem in the 6D space de®ned by these variables.
This problem has been well studied in the pattern
recognition literature, and decision trees are
known to be a very effective solution. We used the
OC1 decision tree system (Murthy et al., 1994) to
obtain the best separation for a training set of 140
sequences, half of which were real terminators and
half of which were false. The true (experimentally
veri®ed) terminators were taken from Table 2 in
the report by Carafa et al., 1990), while the 70 false
examples were sequences that have similar charac-
teristics, but are highly unlikely to be rho-indepen-
dent terminators because they are located inside
genes. The parameters that give the best separ-
ation, classifying 94 % of the training examples
correctly, were:

E � 2:3x1 ÿ 0:9x2 � 1:3x3 � 3:5x4 � 6:0x5

� 1:0x6 ÿ 5:7: �2�
These parameters were used in all subsequent cal-
culations of energy scores.

Functional transcriptional terminators are com-
posed of a hairpin with a 30 poly-U stretch. Most
terminators have poly-U tails longer than three
base-pairs and the length of poly-U regions has
been reported to correlate with termination ef®-
ciency (Jeng et al., 1997). Our algorithm selects only
those hairpins that have at least three consecutive
uracil nucleotides near the stem, at a distance of no
more than ®ve base-pairs and uses the tail-scoring
function from (Carafa et al., 1990):

T � ÿ
X15

n�1

xn �3�

for all U residues in the 15 nucleotide segment
where x0 � 1 and

xn � xnÿ1�0:9 if the nth nucleotide is a U
xnÿ1�0:6 if the nth nucleotide is other than U

�
�4�

The tail-scoring function T re¯ects how many U
nucleotides are located on the 30 side of the hairpin
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and how close these nucleotides are to the stem. A
low value of the tail scoring function corresponds
to a U-rich tail.

The TransTerm algorithm searches a complete
bacterial genome sequence by calculating for all
RNA subsequences whether they satisfy the above
criteria; that is, the energy score is below the cutoff,
and the tail contains at least three consecutive U
nucleotides. In addition, stem length is constrained
to be in the range 4 to 20 nucleotide pairs, and
loop length must range from 3 to 10 nucleotides. A
pseudocode summary of TransTerm is:
for the current position C in the genome

if (there are > � 3 consecutive Us upstream from C

at a distance of <�5 nucleotides) then
for (stem length from 4 to 20) do

for (loop length from 3 to 10) do

for (all possible gap positions including no gap) do

calculate value of the energy scoring function E;

if (E < E0) then

calculate the tail scoring function T;

if (T < T0) then

output a terminator candidate.
For each hairpin found, the following data are
recorded:

(1) Genomic coordinates of the hairpin.
(2) Directionality (forward or reverse strand).
(3) The energy score E, where a low value corre-

sponds to a stable hairpin.
(4) The tail score T, where a low value corre-

sponds to a U-rich 30 tail.

This search identi®es all hairpins with U-rich
tails, with associated energy and tail scores. At this
point the algorithm does not yet have any relative
scores ranking these potential terminators; some
will look like model terminators, while others will
have mismatches or gaps in the stem. The next
phase of the algorithm calculates a con®dence
value for each hairpin. The con®dence value is an
empirical estimate of the speci®city of a given pre-
diction; i.e. C% of the predictions with con®dence
C are expected to be true terminators.

Calculating confidences of
terminator candidates

In order to calculate con®dence, TransTerm ana-
lyzes two types of genome regions: intragenic
(``inside genes'') and intergenic, as shown in
Figure 2. In order to make sure that intragenic
regions really fall within genes, they are de®ned to
include only those sequences beginning 100
nucleotides after the annotated start codon and
ending 100 nucleotides before the stop codon. No
transcription terminators are expected to be found
in these regions. Intergenic regions are de®ned as
DNA sequences between genes plus 50 nucleotides
inside each ¯anking gene. Most (or all) transcrip-
tion terminators should occur in intergenic regions.
We distinguish two types of intergenic regions,
de®ned by the direction of the ¯anking genes:
``tail-to-tail'' and ``head-to-tail''.

There should be no real transcription terminators
inside genes. However there are sequences within
genes that have low values of the energy and tail-
scoring functions. We call these structures ``false
terminators.`` A key point in calculating a con®-
dence for terminator predictions is estimating the
frequency of these false terminators in any given
region of the genome.

Rho-independent transcription terminators (as
well as the false terminators) have a GC-rich stem,
usually at least four to ®ve G-C nucleotides long,
and a U-rich tail. Therefore the frequency of false
terminators should depend to some extent on the
sequence composition. This dependence is modeled
in our program by a second order polynomial
approximation (Figure 3).

Consider that Ninside gene(E, T) hairpins are found
inside genes with energy E and tail scoring func-
tion T. (Here ``inside genes'' means within the set
of all intragenic regions of the genome.) All hair-
pins found in these intragenic regions are ``false''
terminators: structures that are not transcription
terminators but that exceed the computationally
de®ned threshold scores. Using our polynomial
model of the frequency of false terminators based
on AU-content, the number of false terminators in
tail-to-tail regions can be calculated as:

Ntail-to-tail
false �E;T� � 2kNinside gene�E;T� Ltail-to-tail

Linside gene
�5�

where Ltail-to-tail is the sum of all lengths of ``tail-to-
tail'' genome regions and Linside gene is the sum of all
lengths of ``inside gene'' regions. Ninside gene(E, T) is
multiplied by 2 because the intragenic regions are
searched only on the same strand as the gene,
while the tail-to-tail regions are searched on both
strands. The value k is computed using the function
f (%AU), which is the polynomial function approxi-



Figure 2. Regions of genome scanned for rho-indepen-
dent terminator candidates. Top, regions inside genes
(intragenic), where no terminators are expected. Center
and bottom, intergenic regions, where terminators (if
any) are expected.

Figure 3. The number of terminator candidates (y-
axis) found in Mb of random sequence as a function of
AU-content (x-axis) is shown by the solid line. In the
program, this is approximated by the broken line, which
is a second-order polynomial ®t using the least squares
method.
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mating the frequency of false terminators:

k � f �%AUintergenic regions�
f �%AUinside gene� �6�

The number of true terminators found by
TransTerm in tail-to-tail regions is the number of
all terminator candidates in these regions minus
the false terminators:

Ntail-to-tail
real �E;T� �max�Ntail-to-tail�E;T�

ÿNtail-to-tail
false �E;T�; 0� �7�

The probability that a terminator candidate in a
tail-to-tail region with energy E and tail scoring
function T is real is the ratio of number of real
terminators to the number of all terminator
candidates:

C�E;T� � Ntail-to-tail
real �E;T�

Ntail-to-tail�E;T�
� �

� 100% �8�

We will call this probability the con®dence of a
terminator.

Combining equations (5), (7), and (8) gives an
equation where the con®dence of a terminator can-
didate in a tail-to-tail region depends only on the
number of hairpins with the same characteristics
Table 1. Comparison of average values of q(E, T) and qE(E) �q
ÿ20.2 4 E < ÿ12

ÿ4 4 T < 2 q(E, T) � 1.05 � 10ÿ2

qE(E) � qT(T) � 1.31 � 10ÿ2

ÿ5 4 T < 4 q(E, T) � 1.15 � 10ÿ2

qE(E) � qT(T) � 1.31 � 10ÿ2

ÿ6.4 4 T < 5 q(E, T) � 8.15 � 10ÿ3

qE(E) � qT(T) � 7.99 � 10ÿ3
found in all tail-to-tail and intragenic regions:

C�E;T� � max

1ÿ 2kNinside gene�E;T� � Ltail-to-tail

Ntail-to-tail�E;T� � Linside genes

� �
; 0

� �
� 100% �9�

Both Ninside gene(E, T) and Ntail-to-tail(E, T) are two-
dimensional functions. For both intergenic and
intragenic regions, N(E, T) is the number of hair-
pins with energy E � �E/2 and tail scoring func-
tion T � �T/2. This term can be related to the
two-dimensional distribution of energy and tail
scores q(E, T) in the following way:

q�E;T� ��E��T � N�E;T�
N

�10�

where N is the total number of hairpins in the
region. Since the number of hairpin sequences is
insuf®cient for building reliable two-dimensional
distributions q(E, T), the algorithm approximates
q(E, T) by assuming that values of the energy
scoring function and tail scoring function are
independent:

q�E;T� � qE�E� � qT�T� �11�

This assumption is probably not strictly correct,
and Table 1 shows average values of q(E, T) and
T(T) for E. coli intergenic terminator candidates

ÿ12 4 E < ÿ10 ÿ10 4 E < ÿ6

q(E, T) � 2.66 � 10ÿ2 q(E, T) � 2.48 � 10ÿ2

qE(E) � qT(T) � 2.06 � 10ÿ2 qE(E) � qT(T) � 2.69 � 10ÿ2

q(E, T) � 2.94 � 10ÿ2 q(E, T) � 2.75 � 10ÿ2

qE(E) � qT(T) � 3.35 � 10ÿ2 qE(E) � qT(T) � 2.68 � 10ÿ2

q(E, T) � 2.06 � 10ÿ2 q(E, T) � 1.93 � 10ÿ2

qE(E) � qT(T) � 2.65 � 10ÿ2 qE(E) � qT(T) � 1.67 � 10ÿ2
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qE(E) � qT(T) for Escherichia coli intergenic termin-
ator candidates, for different E and T. The maxi-
mum difference between q(E, T) and qE(E) �qT(T) is
about 30 %. At a con®dence value of 98 %, the
error in the con®dence estimate introduced by the
independence assumption for E and T is less than
0.5 % (see equations (9)-(11)). This error increases
to 15 % for a con®dence value of 50 %. If the
con®dence cut-off for genome annotation is set
relatively high (we recommend using 98 % so as to
avoid false positives), then the error introduced by
this assumption will be much smaller than the one
that would result from building a two-dimensional
distribution on a small amount of data. Combining
equations (9)-(11) gives:
C�E;T� � max 1ÿ 2kNinside genes � Ltail-to-tail � q
inside genes
E �E� � q

inside genes
T �T�

Ntail-to-tail � Linside genes � qtail-to-tail
E �E� � qtail-to-tail

T �T�

 !
; 0

 !
100% �12�
Even the one-dimensional distributions qE(E) and
qT(T) are not smooth (Figures 4-5), especially for
regions with a small number of hairpins. To sim-
plify calculations and to make them more reliable
in the case of a small number of hairpins, qE(E) and
qT(T) are approximated with the piece-wise linear
functions QE(E) and QT(T). These functions are
built by dividing the range into a small number of
intervals, calculating an average value for each
interval, and connecting the averages. Other
approximations for qE(E) and qT(T) did not signi®-
cantly change our results.

Some terminators in tail-to-tail regions have
poly-U tails on both of the DNA strands, allowing
them to function bi-directionally, terminating both
of the surrounding genes (Postle & Good, 1985).
The con®dence value of a bi-directional terminator
is calculated as the probability that it functions as a
Figure 4. Distribution of the energy scoring function
E for hairpins found in intragenic regions of E. coli
(broken line) and in ``tail-to-tail'' intergenic regions
(continuous line).
transcription terminator in at least one of the
directions:
Cbi-directional � 1ÿ 1ÿ C�
100%

� �
1ÿ Cÿ

100%

� �� �
� 100% �13�

where C� and Cÿ are the con®dences of the uni-
directional terminators.

The con®dences of terminators in head-to-tail
regions are calculated in a similar manner,
although they are required to be located on the
same DNA strand as the surrounding genes.
Results and Discussion

Application of TransTerm to the E. coli and
H. in¯uenzae genomes identi®ed 1111 and 505
(respectively) terminator candidates. The distri-
butions of con®dence values are shown in Figure 6.
34 % of the E. coli terminator predictions and 62 %
of those for H. in¯uenzae have con®dence values
greater than 99.5 %.

The con®dence value expresses the speci®city of
the prediction; i.e. the number of predictions that
are expected to be correct. In order to evaluate the
sensitivity of the method, i.e. how many true ter-
minators are actually detected, it is necessary to
evaluate it on known, experimentally determined
terminators. The E. coli genome was used to evalu-
ate sensitivity because it is the only genome with a
Figure 5. Distribution of the tail scoring function T for
hairpins found in intragenic regions of E. coli (broken
line) and in ``tail-to-tail'' intergenic regions (continuing
line).



Figure 6. Distribution of con®dences of terminator
candidates found in intergenic regions of (a) E. coli and
(b) H. in¯uenzae genomes. Numbers of terminator candi-
dates with con®dences less than 60 % are 195 for E. coli
and 34 for H. in¯uenzae.

Table 2. Numbers of terminators with con®dence 98 %
or higher found in 12 bacterial genomes

Genome Number of terminators

Escherichia coli 567
Haemophilus influenzae 371
Archaeoglobus fulgidus 2
Borrelia burgdorferi 51
Deinococcus radiodurans 390
Helicobacter pylori 9
Methanococcus jannaschii 14
Mycobacterium tuberculosis 16
Mycoplasma genitalium 14
Thermotoga maritima 118
Treponema pallidum 1
Vibrio cholerae 792

Figure 7. Trade-off between sensitivity and con®dence
for E. coli terminator identi®cation.
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substantial number of experimentally determined
transcription terminators.

The complete set of 131 experimentally deter-
mined rho-independent terminators reported by
Carafa et al. (1990) was used to measure the algor-
ithm's sensitivity. Of these, 61 were used for test-
ing, while 70 were included in the training set on
which the algorithm's parameters were optimized.

TransTerm found all 61 terminators in the test
set, although with varying degrees of con®dence.
Figure 7 shows the sensitivity/speci®city trade-off.
With the con®dence set at 98 % (meaning that 98 %
of all predictions will be correct), the sensitivity is
89 %, meaning that 89 % of all true terminators will
be found. If the con®dence were reduced to 82 %,
then sensitivity would rise such that 98 % of all ter-
minators would be found.

The algorithm is designed to ®nd typical rho-
independent transcription terminators, those that ®t
the ``hairpin � poly-U'' model. It will not ®nd tran-
scription terminators that have a signi®cantly differ-
ent structure; for example, there is one terminator in
the E. coli training set that lacks a poly-U tail and
therefore would not be found by the algorithm. To
date, reports of such atypical rho-independent tran-
scription terminators are quite rare, but that does
not rule out new classes of terminators being dis-
covered in the future.

We compared performance of TransTerm with
the Terminator program in the GCG package
(Brendel & Trifonov, 1984). Terminator missed 4
out of the 61 terminators in our test set, while
TransTerm detected all of them. At the same time,
TransTerm apparently produces fewer false posi-
tives than Terminator. For example, TransTerm
detected no false positives (using a generous con®-
dence cutoff of 50 %) inside the ®rst ten genes on
the E. coli genome, while Terminator detected 13
false positives. Another bene®t of our algorithm is
that in addition to ®nding potential terminators, it
assigns a con®dence value to each prediction. The
user does not need to set thresholds for any of the
complex scoring functions described above; these
are set automatically once the user determines the
appropriate con®dence threshold.

The TransTerm program runs under Unix and
requires about ten minutes per megabase of input
sequence on a 550 MHz Intel processor. The com-
putational time requirement scales linearly with
genome size. The program is available from the
TIGR website at: www.tigr.org.

The algorithm described here is being used as an
annotation tool for de®ning the locations of rho-
independent transcription terminators in bacterial
and archaeal genomes.

Table 2 contains the numbers of terminator can-
didates in 12 bacterial genomes using a con®dence
threshold of 98 %. As the Table illustrates, for some
organisms such as Treponema pallidum, few termin-
ators with high con®dence were found using our
algorithm. We interpret these results to mean these
organisms have transcription termination mechan-
isms that probably use a different structure than
those containing a stem-loop and poly-U tail.

Finally, we analyzed one other type of terminator
candidates: hairpins that are located inside genes
but are anti-directional to the gene (i.e. located on
the opposite strand). These are presumably false
terminators; however, we found that the numbers
of anti-directional and co-directional false termin-
ators were signi®cantly different. For example,
using energy and tail score cut-offs of ÿ6 and ÿ4,
the number of co-directional intragenic hairpins in
E. coli is 312, while the number of anti-directional
hairpins is 577. The probability that this difference
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is random is very small:

P�312; 889� ��0:5�889
X312

k�0

Ck
889 � 100%

� �0:5�889
X312

k�0

889!

k!�889ÿ k�!� 100%

< 10ÿ16% �14�
One possible explanation for this overabundance of
anti-directional hairpins is that some of them may,
in fact, be real terminators. They may terminate
transcription when genes located on opposite
strands of DNA overlap, or they may function as
additional terminators for a transcript on the
reverse strand located nearby. The ef®ciency of rho-
independent terminators is likely to be less than
perfect (Reynolds et al., 1992). These additional ter-
minators may function as redundant downstream
stops. Another possible explanation of the differ-
ence in numbers of co-directional and anti-direc-
tional hairpins is that both occur as a reset of
random mutations, but selection pressures operate
against co-directional hairpins because they inter-
fere with transcription of the genes in which they
are located. Anti-directional terminators may also
have another function; e.g. mRNA transcript stabil-
ization (Guarneros et al., 1982; Mott et al., 1985; Abe
& Aiba, 1996).

Acknowledgments

This research was supported by the Merck Genome
Research Institute under Grant No. 74. S.L.S. was sup-
ported in part by NIH grant R01-LM06845 and NSF
grants KDI-9980088 and IIS-9902923.

References

Abe, H. & Aiba, H. (1996). Differential contributions of
two elements of rho-independent terminator to
transcription termination and mRNA stabilization.
Biochimie, 78, 1035-1042.

Blaisdell, B. E., Rudd, K. E. & Karlin, M. A. (1993).
Signi®cant dispersed recurrent DNA sequences in
the Escherichia coli genome. Several new groups.
J. Mol. Biol. 229, 833-848.

Brendel, V. & Trifonov, E. N. (1984). A computer algor-
ithm for testing potential prokaryotic terminators.
Nucl. Acids Res. 12, 4411-4427.

Brendel, V., Hamm, G. H. & Trifonov, E. N. (1986). Ter-
minators of transcription with RNA polymerase
from Escherichia coli: what they look like and how
to ®nd them. J. Biomolec. Struct. Dynam. 3, 705-723.

Carafa, Y. A., Brody, E. & Thermes, C. (1990). Prediction
of rho-independent Escherichia coli transcription
terminators. A statistical analysis of their RNA
stem-loop structures. J. Mol. Biol. 216, 835-858.

Farnham, P. J. & Platt, T. (1981). Rho-independent
termination: dyad symmetry in DNA causes RNA
polymerase to pause during transcription in vitro.
Nucl. Acids Res. 9, 563-577.

Guarneros, G., Montanez, C., Hernandez, T. & Court, D.
(1982). Posttranscriptional control of bacteriophage
l int gene expression from a site distal to the gene.
Proc. Natl Acad. Sci. USA, 79, 238-242.

Henkin, T. M. (1996). Control of transcription termin-
ation in prokaryotes. Annu. Rev. Genet. 30, 35-57.

Jeng, S. T., Lay, S. H. & Lai, H. M. (1997). Transcription
termination by bacteriophage T3 and 5P6 RNA
polymerases at Rho-independent terminators. Can.
J. Microbiol. 43, 1147-1156.

Kroll, J. S., Loynds, B. M. & Langford, P. R. (1992).
Palindromic haemophilus DNA uptake sequences
in presumed transcriptional terminators from H.
in¯uenzae and H. parain¯uenzae. Gene, 114, 151-152.

Mott, J. E., Galloway, J. L. & Platt, T. (1985). Maturation
of Escherichia coli tryptophan operon mRNAs: evi-
dence for 30 exonucleolytic processing after rho-
independent termination. EMBO J. 4, 1887-1891.

Murthy, S. K., Kasif, S. & Salzberg, S. L. (1994). A
system for induction of oblique decision trees.
J. Arti®cial Intelligence Res. 2, 1-32.

Platt, T. (1986). Transcription termination and the regu-
lation of gene expression. Annu. Rev. Biochem. 55,
339-372.

Postle, K. & Good, R. F. (1985). A bi-directional rho-
independent transcription terminator between the
E. coli tonB gene and an opposing gene. Cell, 41,
577-585.

Reynolds, R., BermuÈ dez-Cruz, R. M. & Chamberlin, M. J.
(1992). Parameters affecting transcription termin-
ation by Escherichia coli RNA polymerase: I. Anal-
ysis of 13 Rho-independent terminators. J. Mol. Biol.
224, 31-51.

Richardson, J. P. (1993). Transcription termination. Crit.
Rev. Biochem. Mol. Biol. 28, 1-30.

Smith, H. O., Tomb, J.-F., Dougherty, B. A.,
Fleischmann, R. D. & Venter, J. C. (1995). Frequency
and distribution of DNA uptake signal sequences in
the Haemophilus in¯uenzae Rd genome. Science, 269,
538-540.

Washio, T., Sasayama, J. & Tomita, M. (1998). Analysis
of complete genomes suggests that many prokar-
yotes do not rely on hairpin formation in transcrip-
tion termination. Nucl. Acids Res. 26, 5456-5463.

Wilson, K. S. & von Hippel, P. H. (1995). Transcription
termination at intrinsic terminators: the role of the
RNA hairpin. Proc. Natl Acad. Sci. USA, 92, 8793-
8797.

Yager, T. D. & von Hippel, P. H. (1991). A thermo-
dynamic analysis of RNA transcript elongation and
termination in Escherichia coli. Biochemistry, 30,
1097-1118.

Zuker, M. (1994). Prediction of RNA secondary structure
by energy minimization. Methods Mol. Biol. 25, 267-
294.
Edited by F. E. Cohen
(Received 4 January 2000; received in revised form 3 April 2000; accepted 28 April 2000)


	Introduction
	Methods
	Searching a genome for terminator candidates
	Figure 01
	Figure 02
	Figure 03
	Table 1
	Calculating confidences of terminator candidates

	Results and Discussion
	Figure 04
	Figure 05
	Figure 06
	Table 2
	Figure 07

	References

