
DNA sequencing efficiency has increased by approxi‑
mately 100,000‑fold in the decade since sequencing 
of the human genome was completed. Next-generation 
sequencing (NGS) machines can now sequence the 
entire human genome in a few days, and this capabil‑
ity has inspired a flood of new projects that are aimed 
at sequencing the genomes of thousands of individual 
humans and a broad swath of animal and plant species1–3. 
New methods, such as whole‑transcriptome sequencing 
(also called RNA sequencing (RNA‑seq))4–7, chromatin 
immunoprecipitation followed by sequencing (ChIP–
seq)8–11 and sequencing to identify methylated DNA 
(methyl‑seq)12,13, are transforming our ability to capture 
an accurate picture of the molecular processes within 
the cell, which, in turn, is leading to a better understand‑
ing of human diseases14. Whole‑genome resequencing 
combined with new, highly efficient alignment software 
is being used to discover large numbers of SNPs and 
structural variants in previously sequenced genomes15. 
In response to this influx of new laboratory methods, 
many novel computational tools have been developed to 
map NGS reads to genomes and to reconstruct genomes 
and transcriptomes11,16–22. Current NGS platforms  
produce shorter reads than Sanger sequencing (NGS 
reads are 50–150 bp), but with vastly greater numbers  
of reads, as many as 6 billion per run. By contrast, the 
original human genome project generated approximately  
30 million reads using Sanger sequencing. 

Some of the biggest technical challenges that are 
associated with these new methods are caused by 
repetitive DNA23: that is, sequences that are similar or 
identical to sequences elsewhere in the genome. Most 
large genomes are filled with repetitive sequences; for 
example, nearly half of the human genome is covered 
by repeats, many of which have been known about for 
decades24,25. Although some repeats appear to be non‑
functional, others have played a part in human evo‑
lution26,27, at times creating novel functions, but also 
acting as independent, ‘selfish’ sequence elements28,29. 
Repeats arise from a variety of biological mechanisms 
that result in extra copies of a sequence being pro‑
duced and inserted into the genome. Repeats come 
in all shapes and sizes: they can be widely interspersed 
repeats, tandem repeats or nested repeats, they may 
comprise just two copies or millions of copies, and they 
can range in size from 1–2 bases (mono‑ and dinucleo‑
tide repeats) to millions of bases. Well‑characterized 
repeats in the human genome (BOX 1) are sometimes 
separated into two classes: short tandem repeats (also 
called microsatellites) and longer interspersed repeats 
(called short interspersed nuclear elements (SINEs) and 
long interspersed nuclear elements (LINEs)). The most 
well‑documented example of interspersed repeats in 
the human genome is the class of Alu repeat elements, 
which cover approximately 11% of the genome25. 
Repeats can also take the form of large‑scale segmental 
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Abstract | Repetitive DNA sequences are abundant in a broad range of species, from 
bacteria to mammals, and they cover nearly half of the human genome. Repeats have 
always presented technical challenges for sequence alignment and assembly programs. 
Next-generation sequencing projects, with their short read lengths and high data 
volumes, have made these challenges more difficult. From a computational perspective, 
repeats create ambiguities in alignment and assembly, which, in turn, can produce biases 
and errors when interpreting results. Simply ignoring repeats is not an option, as this 
creates problems of its own and may mean that important biological phenomena are 
missed. We discuss the computational problems surrounding repeats and describe 
strategies used by current bioinformatics systems to solve them.
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Interspersed repeats
Identical or nearly identical 
DNA sequences that are 
separated by hundreds, 
thousands or even millions of 
nucleotides in the source 
genome. Repeats can be 
spread out through the 
genome by mechanisms such 
as transposition.

Tandem repeats
DNA repeats (≥2bp in length) 
that are adjacent to each other 
and can involve as few as two 
copies or many thousands  
of copies. Centromeres and 
telomeres are largely 
comprised of tandem repeats. 

Short interspersed nuclear 
elements
(SINEs). Repetitive DNA 
elements that are typically 
100–300 bp in length and 
spread throughout the genome 
(such as Alu repeats).

Long interspersed nuclear 
elements
(LINEs). Repetitive DNA 
elements that are typically 
>300 bp in length and spread 
throughout the genome (such 
as L1 repeats).

duplications, such as those found on some human chro‑
mosomes30 and even whole‑genome duplication, such 
as the duplication of the Arabidopsis thaliana genome31. 
High levels of repetitiveness are found across all king‑
doms of life, and plant genomes contain particularly 
high proportions of repeats: for example, transposable 
elements cover >80% of the maize genome32. A recent 
study reported that the short‑lived fish Nothobranchius 
furzeri has 21% of its genome occupied by tandem 
repeats, suggesting a possible role for tandem repeats 
in the ageing process33. Even bacterial genomes can 
exhibit repeat content up to 40%, as demonstrated by 
Orientia tsutsugamushi 34. 

From a computational perspective, repeats create 
ambiguities in alignment and in genome assembly, 
which, in turn, can produce errors when interpreting 
results. Repeats that are sufficiently divergent do not 
present problems, so for the remaining discussion in 

this Review, we define a repeat as a sequence that is at 
least 100 bp in length, that occurs two or more times in 
the genome and that exhibits >97% identity to at least 
one other copy of itself. This definition excludes many 
repetitive sequences, but it includes those that present 
the principal computational challenges.

In this Review, we consider the challenges that are 
posed by repeats for genome resequencing projects, de 
novo genome assembly and RNA‑seq analysis. We focus 
on two classes of computational tools: software for the 
alignment of NGS reads and software for the assembly of 
genomes and transcriptomes. Some of the more widely 
used programs in both categories are shown in TABLES 

1,2, which illustrates the breadth of tools available. 
Rather than describing the algorithmic details of these 
programs, we will discuss their shared strategies for solv‑
ing repeat‑induced analysis problems in each situation 
and address some of their limitations.

Box 1 | Repetitive DNA in the human genome 

Approximately 50% of the human genome is comprised of repeats. The table in panel a shows various named classes of 
repeat in the human genome, along with their pattern of occurrence (shown as ‘repeat type’ in the table; this is taken 
from the RepeatMasker annotation). The number of repeats for each class found in the human genome, along with the 
percentage of the genome that is covered by the repeat class (Cvg) and the approximate upper and lower bounds on 
the repeat length (bp). The graph in panel b shows the percentage of each chromosome, based on release hg19 of the 
genome, covered by repetitive DNA as reported by RepeatMasker. The colours of the graph in panel b correspond to 
the colours of the repeat class in the table in panel a. Microsatellites constitute a class of repetitive DNA comprising 
tandem repeats that are 2–10 bp in length, whereas minisatellites are 10–60 bp in length, and satellites are up to 100 bp 
in length and are often associated with centromeric or pericentromeric regions of the genome. DNA transposons are 
full-length autonomous elements that encode a protein, transposase, by which an element can be removed from one 
position and inserted at another. Transposons typically have short inverted repeats at each end. Long terminal repeat 
(LTR) elements (which are often referred to as retrovirus-like elements) are characterized by the LTRs (200–5000 bp) 
that are harboured at each end of the retrotransposon. LINE, long interspersed nuclear element; rDNA, ribosomal 
DNA; SINE, short interspersed nuclear element.
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Multi-read
A DNA sequence fragment (a 
‘read’) that aligns to multiple 
positions in the reference 
genome and, consequently, 
creates ambiguity as to which 
location was the true source  
of the read.

Paired-end reads
Reads that are sequenced  
from both ends of the same 
DNA fragment. These can be 
produced by a variety of 
sequencing protocols, and 
paired-end preparation is 
specific to a given sequencing 
technology. Some recent 
sequencing vendors use  
the terms ‘paired end’ and  
‘mate pair’ to refer to different 
protocols, but these terms are 
generally synonymous.

Genome resequencing projects
Genome resequencing allows researchers to study 
genetic variation by analysing many genomes from 
the same or from closely related species23,35–37. The 
primary requirement is for a high‑quality reference 
genome onto which all of the short NGS reads can be 
mapped. After sequencing a sample to deep coverage, 
it is possible to detect SNPs, copy number variants 
(CNVs) and other types of sequence variation without 
the need for de novo assembly. The computational task 
involves aligning millions or billions of reads back to 
the reference genome using one of several short‑read 
alignment programs (TABLE 1). The two most efficient 
of these aligners, Bowtie and the Burrows–Wheeler 
Aligner (BWA), achieve throughputs of 10–40 million 
reads per hour on a single computer processor. In spite 
of this recent progress, a major challenge remains when 
trying to decide what to do with reads that map to mul‑
tiple locations (that is, multi-reads). Below, we discuss 
how current short‑read alignment tools handle these 
reads and what problems remain unresolved.

Problems when mapping multi-reads. For computational 
tools that align NGS reads to a genome, the most com‑
monly encountered problem arises when reads align 
to multiple locations. For convenience, these reads that 
map to multiple locations are often called multi‑reads. 
Although the specific type of repeat does not directly 
influence the read‑mapping program, it can influence 
downstream analyses (such as SNP calling) that rely on 
unique regions that flank the repeats. The percentage of 
short reads (25 bp or longer) that map to a unique location 
on the human genome is typically reported to be 70–80%, 
although this number varies depending on the read 
length, the availability of paired-end reads and the sensitiv‑
ity of the software used for alignment. The repeat content 
in the human genome, by contrast, is around 50%. The 
main reason for the discrepancy is that most repeats are 
inexact, which means that many reads will have a unique 
‘best match’, even though the same sequence might occur 
with slight variations in other locations (FIG. 1a). Assigning 
reads to the location of their best alignment is the simplest 
way to resolve repeats, although it is not always correct. 

Table 1 | Overview of current computational tools for next-generation sequencing genome alignment and assembly

Scope Program Repeat-relevant parameters Website Refs

SV or CNV 
detection

BreakDancer Specify the mapping quality threshold for ambiguous 
reads: -q 

http://sourceforge.net/projects/breakdancer 

CNVnator None available or none required http://sv.gersteinlab.org/cnvnator/ 

He et al. (2011) Algorithm only, able to estimate CNV counts in 
repeat-rich regions

None 47

PEMer Maximum alignments per multi-read: 
--max_duplicates_per_score

http://sv.gersteinlab.org/pemer 

VariationHunter None available or none required http://compbio.cs.sfu.ca/strvar.htm 

SNP 
detection

GATK None available or none required http://www.broadinstitute.org/gsa/wiki/
index.php/Downloading_the_GATK 

SAMtools In repetitive regions, avoid calling ‘A’: -avcf ref.fa aln.bam http://samtools.sourceforge.net

SOAPsnp None required; multi-reads supported by read aligner 
parameters

http://soap.genomics.org.cn/soapsnp.html 

Sniper Read mapping policy: --all, --uniq, --best http://kim.bio.upenn.edu/software/ 
sniper.shtml

VarScan None available or none required http://varscan.sourceforge.net

Short-read 
alignment

Bowtie Randomly distribute reads across repeats: --best –M 1 
-strata

http://bowtie-bio.sourceforge.net 16

BFAST Reports all locations by default http://bfast.sourceforge.net 69

Burrows–Wheeler 
Aligner (BWA)

Report one random hit for repetitive reads: -n 1 http://bio-bwa.sourceforge.net 70

mrFAST Reports all locations by default, for best match: --best http://mrfast.sourceforge.net 71

SOAPAligner Report all locations: -r 2 http://soap.genomics.org.cn/soapaligner.html 72

De novo 
assembly 

Allpaths-LG None required: incorporated into library insert size 
recipe

http://www.broadinstitute.org/software/
allpaths-lg/blog/?page_id=12

20

CABOG Re-assemble misclassified non-unique unitigs: 
doToggle=1

http://wgs-assembler.sf.net 73

SGA Resolve small repeats at end of reads: -r 20 http://github.com/jts/sga

SOAPdenovo Use reads to solve small repeats: -R http://soap.genomics.org.cn/soapdenovo.html 17

Velvet Use long reads to resolve repeats: -long, -exp_cov auto http://www.ebi.ac.uk/~zerbino/velvet 74,75

The ‘Program’ column contains the name of program or algorithm. The ‘Repeat-relevant parameters’ column is a list of parameters that adjust how repeats are 
treated. The programs have many other parameters, but more careful treatment of repeats would start with modification of these. CNV, copy number variant;  
SV, structural variant. 
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For example, suppose that a read maps to two loca‑
tions, A and B, where the read aligns with one mis‑
match at location A and with one deletion at B (FIG. 1b).  
If the alignment program considers a mismatch to be 
less ‘costly’ than a gap (that is, if it assumes that sub‑
stitutions are more likely than deletions), then the 
aligner will put the read in location A. However, if  
the source DNA has a true deletion in location B,  
then the read would perfectly match position B. This 
illustrates a problem that is inherent in the process of 
aligning reads to a reference genome: the source DNA 
is virtually never identical to the reference (and, in fact, 
the differences are the whole reason why the source is 
being sequenced). 

Another example to consider is the following. 
Suppose that a human genome sample is sequenced, 
but only analysis of the variants that are present in 
part of the genome is required: for example, analysis of 
chromosome 14. The most straightforward approach 
would be to use a short‑read aligner to map reads 
directly to that chromosome. Unfortunately, this strat‑
egy would lead to a large pile up of reads from repeti‑
tive regions, because all reads from those repeats would 
have to go to the same chromosome. To avoid this bias, 
we must map the reads against the entire genome and 
use a strategy of random placement of multi‑reads to 
scatter them uniformly across all repeat copies. TABLE 1  
lists some of the most useful parameters for deal‑
ing with repeats within the most popular alignment  
programs.

Multi-read mapping strategies. Systematic alignment 
of reads to incorrect positions in the genome can lead 
to false inferences of SNPs and CNVs. For example, 
FIG. 1b illustrates how a SNP would be erroneously 
identified after a mistake by the alignment program. 
Essentially, an algorithm has three choices for dealing 
with multi‑reads38 (FIG. 2). The first is to ignore them, 
meaning that all multi‑reads are discarded. The second 
option is the best match approach, in which the align‑
ment with the fewest mismatches is reported. If there 
are multiple, equally good best match alignments, then 
an aligner will either choose one at random or report 
all of them. The third choice is to report all alignments 
up to a maximum number, d, regardless of the total 
number of alignments found. A variant on this strategy  
is to ignore multi‑reads that align to >d locations. 

To simplify the analysis, some alignment protocols 
prefer the ‘ignore’ strategy for multi‑reads. However, 
this strategy limits analysis to unique regions in the 
genome, discarding many multi‑gene families as well 
as all repeats, which might result in biologically impor‑
tant variants being missed. An example in which this 
occurred is a recent study of retinitis pigmentosa, 
wherein Tucker et al.39 performed exome sequencing 
of induced pluripotent stem cells that were derived 
from a patient with autosomal recessive retinitis pig‑
mentosa. They discovered that the cause of the disease 
in this patient was a novel, homozygous insertion of 
a 353 bp Alu repeat in the middle of exon 9 of male 
germ‑cell‑associated kinase (MAK). The software used 

Table 2 | Overview of current computational tools for next-generation sequencing transcriptome analysis

Scope Program Repeat-relevant parameters Website Refs

Spliced 
read 
alignment

GSNAP http://share.gene.com/gmap 

MapSplice http://www.netlab.uky.edu/p/bioinfo/MapSplice

RUM http://www.cbil.upenn.edu/RUM

SpliceMap http://www.stanford.edu/group/wonglab/
SpliceMap

TopHat http://tophat.cbcb.umd.edu

Reference- 
guided 
transcript 
assembly

Cufflinks Improve repeat read mapping estimate: 
--multi-read-correct

http://cufflinks.cbcb.umd.edu 18,19

ERANGE Use multi-read fractions: --withmultifraction http://woldlab.caltech.edu/rnaseq 5

G-Mo.R-Se None required; multi-reads supported by read aligner 
parameters

http://www.genoscope.cns.fr/externe/gmorse

Myrna None required; multi-reads supported by read aligner 
parameters

http://bowtie-bio.sourceforge.net/myrna 46

Scripture None required; multi-reads supported by  read aligner 
parameters

http://www.broadinstitute.org/software/
scripture 

De novo 
transcript 
assembly

Multiple-k None required or none available http://www.surget-groba.ch/downloads 

Rnnotator None required or none available None

Trinity Separate transcripts derived from paralogues: 
--run_butterfly

http://trinityrnaseq.sourceforge.net 21

Trans-ABySS None required or none available through  
command line

http://www.bcgsc.ca/platform/bioinfo/
software/trans-abyss

76

Velvet-Oases Use long reads to resolve repeats: -long, -exp_cov auto http://www.ebi.ac.uk/~zerbino/oases 77

The ‘Program’ column contains the name of program or algorithm. The ‘Repeat-relevant parameters’ column is a list of parameters that adjust how repeats are 
treated. The programs have many other parameters, but more careful treatment of repeats would start with modification of these.
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Figure 1 | Ambiguities in read mapping. A | Read-mapping confidence versus repeat-copy similarity. As the similarity 
between two copies of a repeat increases, the confidence in any read placement within the repeat decreases. At the 
top of the figure, we show three different tandem repeats with two copies each. Directly beneath these tandem repeats 
are reads that are sequenced from these regions. For each tandem repeat, we have highlighted and zoomed in on a 
single read. Starting with the leftmost read (red) from tandem repeat X, we have low confidence when mapping this 
read within the tandem repeat, because it aligns equally well to both X

1
 and X

2
. In the middle example (tandem repeat Y, 

green), we have a higher confidence in the mapping owing to a single nucleotide difference, making the alignment to 
Y

1
 slightly better than Y

2
. In the rightmost example, the blue read that is sequenced from tandem repeat Z aligns 

perfectly to Z
1
, whereas its alignment to Z

2 
 contains three mismatches, giving us a high confidence when mapping the 

read to Z
1
. B | Ambiguity in read mapping. The 13 bp read shown along the bottom maps to two locations, a and b, 

where there is a mismatch at location a and a deletion at b. If mismatches are considered to be less costly, then the 
alignment program will put the read in location a. However, the source DNA might have a true deletion in location b, 
meaning that the true position of the read is b.

for aligning the reads to the genome trimmed off Alu 
sequences from the ends of reads, which created a MAK 
gene that appeared to be normal and initially prevented 
the discovery of the mutation. Only through a fortunate 
accident did the investigators discover the presence of 
the Alu insertion39. The two alternative strategies listed 
above will ‘fill in’ repetitive regions, although only the 
best match approach will provide a reasonable estimate 
of coverage (FIG. 2b). Allowing multi‑reads to map to 
all possible positions (FIG. 2c) avoids making a possibly 
erroneous choice about read placement. Multi‑reads 
can sometimes be manually resolved with tools such 
as IGV40 and SAMtools41, which allow users to choose 
which read placements to keep and which to discard. 
However, this is not usually a feasible strategy for very 
large NGS data sets.

Genotyping and SNP detection. After mapping the 
reads, the next step in the computational pipeline is 
to call SNPs using a program such as GATK42, MAQ43, 
SAMtools41, SOAPsnp44 or VarScan45. If multi‑reads are 
handled using the ‘best match’ alignment method, SNPs 
should be found in at least some repetitive regions. Some 
methods attempt to handle multi‑reads more explicitly. 
For example, Sniper38 assumes that some multi‑reads 

will align unambiguously owing to slight sequence vari‑
ations, and it also assumes that SNPs will occur in dif‑
ferent locations in different paralogous genes. It uses 
these assumptions to compute an alignment probability 
for each multi‑read. The probability is computed using 
a Bayesian genotyping model that decomposes the like‑
hood of a read mapping to a given locus into its com‑
ponent likelihoods. This strategy offers some help for 
repeats that have few copies, but computation of these 
probabilities comes at a cost: Sniper would require 
~3 central processing unit months to analyse data for a 
70‑fold coverage of the human genome. 

Structural and copy number variant detection. 
Computational tools can discover multiple types of 
variants in NGS data, including deletions, insertions, 
inversions, translocations and duplications (reviewed in 
REF. 23). Although the software methods that are avail‑
able can find variants in unique regions reliably, the 
short NGS read lengths prevent them from detecting 
variation in repetitive regions with comparable sensitiv‑
ity. When repeats are longer than the length of a read, 
methods must rely on depth of coverage or paired‑end 
data to determine whether a repeat region is a variant 
— neither of these options provides a perfect indictation 
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A
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a b c

Best match All matches

B A B A B

Figure 2 | Three strategies for mapping multi-reads. The shaded rectangles at the 
top represent intervals along a chromosome. The two blue rectangles below each 
region represent an identical two-copy repeat containing the paralogous genes A and B. 
The small orange bars represent reads aligned to specific positions. a | The ‘unique’ 
strategy reports only those reads that are uniquely mappable. Because A and B are 
identical, no alignments are reported. b | The ‘best match’ alignment strategy reports 
the best possible alignment for each read, which is determined by the scoring function 
of the alignment algorithm. In the case of ties, this strategy randomly distributes reads 
across equally good loci, as shown here. c | The ‘all matches’ strategy simply reports all 
alignments for each multi-read, including lower-scoring alignments.

 

De Bruijn graph 
A directed graph data structure 
representing overlaps between 
sequences. In the context of 
genome assembly, DNA 
sequence reads are broken up 
into fixed-length subsequences 
of length k, which are 
represented as nodes in the 
graph. Directed edges are 
created between nodes i and j 
if the last k–1 nucleotides of i 
match the first k–1 nucleotides 
of j. Reads become paths in 
the graph, and contigs are 
assembled by following  
longer paths.

Contigs 
Contiguous stretches of DNA 
that are constructed by an 
assembler from the raw reads 
produced by a sequencing 
machine. 

DNA fragment
In the sequencing process, 
millions of small fragments are 
randomly generated from a 
DNA sample. In paired-end 
sequencing, both ends of  
each fragment are sequenced, 
and the fragment length 
becomes the ‘library’ size.

of structural and CNVs. For example, suppose that a 
genome of interest is sequenced to an average depth of 
30‑fold coverage but that a particular tandem repeat 
that has two copies in the reference genome has 60‑fold 
coverage. These data suggest that the tandem repeat 
has four copies in the genome of interest — twice the 
number seen in the reference. However, depth of cover‑
age varies across a genome, which makes it difficult to 
distinguish N versus N + 1 copies of a repeat with high 
confidence.

With this caveat, one of the first algorithms to incor‑
porate both read‑depth and read‑pair data for accu‑
rate CNV discovery was VariationHunter13, which has 
been updated to allow it to find transposons46. Recently, 
He et al.47 described a new method that was designed to 
find CNVs even in repeat‑rich regions; this method also 
used information from read pairs and depth of cover‑
age. These authors attempt to account for all mappings 
of each multi‑read, and their method uses this informa‑
tion to improve the estimation of the true copy number 
of each repeat. 

In general, the mapping strategies used for rese‑
quencing projects apply to any NGS application in 
which reads need to be mapped to a reference genome, 
although some customizations are needed to address 
the demands of particular applications. For example, 
in a methyl‑seq experiment, analysis is customized to 
account for C‑to‑T changes.

De novo genome assembly
Genome assembly algorithms begin with a set of reads 
and attempt to reconstruct a genome as completely as 
possible without introducing errors. NGS read lengths 
(50–150 bp) are considerably shorter than the 800–900 bp  
lengths that capillary‑based (Sanger) sequencing meth‑
ods were achieving more than 5 years ago, and these 
short read lengths make assembly more difficult. NGS 
technology generates higher depth of coverage at far 
lower cost than Sanger sequencing and, as a result, 
current strategies for assembly attempt to use deeper 

coverage to compensate for shorter reads. However, 
repetitive sequences create substantial difficulties that 
coverage depth cannot always overcome. 

Problems caused by repeats. For de novo assembly, 
repeats that are longer than the read length create gaps 
in the assembly. This fact, coupled with the short length 
of NGS sequences, means that most recent genome 
assemblies are much more fragmented than assemblies 
from a few years ago, as evidenced by recent surveys48,49. 
In addition to creating gaps, repeats can be erroneously 
collapsed on top of one another and can cause com‑
plex, misassembled rearrangements50,51. The degree of 
difficulty (in terms of correctness and contiguity) that 
repeats cause during genome assembly largely depends 
on the read length: if a species has a common repeat 
of length N, then assembly of the genome of that spe‑
cies will be far better if read lengths are longer than N. 
As illustrated in BOX 1, the human genome has millions 
of copies of repeats in the range of 200–500 bp, which 
is longer than the reads that are produced by today’s 
most efficient NGS technologies. Until read lengths are 
greater than 500 bp, assemblies of large plant and animal 
genomes will need to use other strategies to assemble 
these types of repeats correctly. Even Sanger read lengths 
(800–900 bp) cannot resolve longer repeats such as 
LINEs (BOX 1), and these will continue to require long‑
range linking information (or exceptionally long‑range 
reads, perhaps generated by future technologies) if they 
are to be resolved. 

Despite these challenges, many new de novo assem‑
blers have emerged to tackle this problem, a selection of 
which are shown in TABLE 1. All of these assemblers fall 
into one of two classes: overlap‑based assemblers and de 
Bruijn graph assemblers, both of which create graphs (of 
different types) from the read data. The algorithms then 
traverse these graphs in order to reconstruct the genome. 
From a technical perspective, repeats cause branches in 
these graphs, and assemblers must then make a guess 
as to which branch to follow (FIG. 3). Incorrect guesses 
create false joins (chimeric contigs) and erroneous 
copy numbers. If the assembler is more conservative, 
it will break the assembly at these branch points, lead‑
ing to an accurate but fragmented assembly with fairly 
small contigs.

The essential problem with repeats is that an assem‑
bler cannot distinguish them, which means that the 
regions flanking them can easily be misassembled. The 
most common error is that an assembler will create a 
chimaera by joining two chromosomal regions that do 
not belong near one another, as illustrated in FIG. 3. As 
shown in the figure, all of the reads may align well to 
the misassembled genome; the only hint of a problem 
is found in the paired‑end links. Paired‑end reads are 
generated from a single DNA fragment of a fixed size, 
from which both ends are sequenced. An assembler uses 
both the expected distance and the orientation of the 
reads when reconstructing a genome. If the sequence 
data do not contain paired ends that span a particular 
repeat, then it might be impossible to assemble the data 
unambiguously. 
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Figure 3 | Assembly errors caused by repeats. A | Rearrangement assembly error caused by repeats. Aa | An example 
assembly graph involving six contigs, two of which are identical (R

1
 and R

2
). The arrows shown below each contig represent 

the reads that are aligned to it. Ab | The true assembly of two contigs, showing mate-pair constraints for the red, blue and 
green paired reads. Ac | Two incorrectly assembled chimeric contigs caused by the repetitive regions R

1
 and R

2
. Note that 

all reads align perfectly to the misassembled contigs, but the mate-pair constraints are violated. B | A collapsed tandem 
repeat. Ba | The assembly graph contains four contigs, where R

1
 and R

2
 are identical repeats. Bb | The true assembly, 

showing mate-pair constraints for the red and blue paired reads, which are oriented correctly and spaced the correct 
distance apart. Bc | A misassembly that is caused by collapsing repeats R

1
 and R

2
 on top of each other. Read alignments 

remain consistent, but mate-pair distances are compressed. A different misassembly of this region might reverse the order 
of R

1
 and R

2
. C | A collapsed interspersed repeat. Ca | The assembly graph contains five contigs, where R

1
 and R

2
 are 

identical repeats. Cb | In the correct assembly, R
1
 and R

2 
are separated by a unique sequence. Cc | The two copies of the 

repeat are collapsed onto one another. The unique sequence is then left out of the assembly and appears as an isolated 
contig with partial repeats on its flank.

Two recent studies illustrate the difficulty of assem‑
bling large genomes from very short reads. Alkan et al.52 
looked at recent human genome assemblies and found 
that they were 16% shorter than the reference genome, 
primarily owing to missing repetitive sequences. In 
particular, the NGS assemblies were lacking 420 Mbp of 

common repeats, including LINE 1 elements, Alu ele‑
ments and a large majority of segmental duplications. 
Ye et al.48 compared two NGS assemblies of the chicken 
genome to its reference genome, which was generated 
by Sanger sequencing. The chicken genome has a much 
lower repeat content than the human genome (10% 
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Figure 4 | Longer paired-end libraries improved 
assembly contiguity in the repetitive potato genome. 
Each point represents the scaffold N50 size of an assembly 
of the potato genome that was built using paired-end 
reads from inserts of a specific size and smaller. Successive 
points moving from left to right used all previous data plus 
one additional, longer paired-end library size, which is 
plotted on the y axis. With the addition of the final, 20 kb 
library, the scaffold N50 size reached 1.3 Mb. The data in 
this figure are taken from REF. 56.

N50
A widely used statistic for 
assessing the contiguity of a 
genome assembly. The N50 
value is computed by sorting 
all contigs in an assembly from 
largest to smallest, then 
cumulatively adding contig 
sizes starting with the largest 
and reporting the size of the 
contig that makes the total 
greater than or equal to 50% 
of the genome size. The N50 
value is also used for scaffolds.

Scaffold
A scaffold is a collection of 
contigs that are linked together 
by paired end information with 
gaps separating the contigs.

versus 50%), making it considerably easier to assem‑
ble. Although their analysis did not look at recent seg‑
mental duplications at the level of detail of Alkan et al.,  
they found only 37 long (>10 kb) contigs that were 
misassembled in total from the two assemblies. Visual 
inspection indicated that most of these errors were 
caused by the collapse of interspersed repeats flanking 
unique sequences (FIG. 3c).

Tandem repeats present another common assembly 
problem. Near‑identical tandem repeats are often col‑
lapsed into fewer copies, and it is difficult for an assem‑
bler to determine the true copy number. Notably, the 
investigation into the 2001 Bacillus anthracis attacks 
in the United States identified isolates of the attack 
strain that only differed in the presence of two‑ and 
three‑copy tandem repeats, which the genome assem‑
bler had initially collapsed incorrectly53,54. After the 
assembly errors were detected, the CNVs were cor‑
rectly reconstructed. These CNVs were present in 
only minor ‘morphotypes’ from the anthrax‑containing  
letters, which contained a mixture of slight vari‑
ants on the Ames strain of B. anthracis. The tandem 
repeat copies were 822, 2,023 and 2,607 nucleotides 
in length, and these unique markers provided cru‑
cial forensic evidence that led investigators back to a  
single source for the attacks53. FIGURE 3b illustrates  
a collapsed repeat in which two identical copies are 
assembled into one. Note that all of the reads may align 
perfectly, but the coverage depth and the mate‑pair  
information will be inconsistent. 

Strategies for handing repeats. In either an overlap graph 
or a de Bruijn graph, all copies of a repeat will initially 
be represented by a single node. Repeat boundaries 
and sequencing errors show up as branch points in the 
graph, and complex repeats appear as densely connected 
‘tangles’ (REF. 55). Assemblers use two main strategies 
to resolve these tangles. First and most importantly, 
they use mate‑pair information from reads that were 
sequenced in pairs. A variety of protocols are available 
for producing two reads from opposite ends of a longer 
fragment of DNA; these fragments range in length from 
200 bp up to 20,000 bp. Even longer stretches can be pro‑
duced using fosmid clones (30 to 40 kbp) and bacterial 
artificial chromosome (BAC) clones (up to 150 kbp), 
although efficient ways of sequencing the ends of these 
clones are still under development. If a read pair spans 
a repeat, then the assembler can use that information to 
decide how to move from a unique region in the graph 
through a repeat node and into the correct unique region 
on the other side. Longer fragments allow assemblers to 
span longer repeats. Because paired‑end information is 
imperfect, most assemblers require two or more pairs of 
reads to confirm each decision about how to assemble 
a repeat region.

A good illustration of this strategy is the recently 
assembled potato genome56. Potato is highly repeti‑
tive and has repeats covering an estimated 62% of its 
genome. The first assembly of this 844 Mbp genome, 
which was generated with a combination of Illumina 
and 454 reads, produced tiny contigs that had an N50 

size of just 697 bp and also produced scaffolds with an 
N50 size of 8 kb. As the genome was reassembled using 
Illumina mate‑pair libraries with increasingly large frag‑
ment sizes (2 to 10 kb), the scaffolds grew linearly with 
the insert size, as shown in  FIG. 4. The final scaffold N50 
size, after using Sanger sequencing to generate paired 
ends from 40 kb fosmids and 100 kb BACs, was 1.3 Mbp 
— a 100‑fold improvement over the initial statistics. This 
is a good example of how long fragment libraries can be 
used to ‘jump’ across repetitive DNA and link together 
many more contigs.

The second main strategy for handling repeats is to 
compute statistics on the depth of coverage for each con‑
tig. These statistics do not tell assemblers exactly how to 
assemble each repeat, but they do identify the repeats 
themselves. In order to make use of this information, 
assembly programs must assume that the genome is uni‑
formly covered; this means that if a genome is sequenced 
to 50‑fold (50×) coverage, then the assembler assumes 
that most contigs should also be covered at 50×. A repet‑
itive region, by contrast, will have substantially deeper 
coverage, which allows the algorithm to identify it as a 
repeat and to process it differently. In particular, repeats 
are usually assembled after unique regions, and assem‑
blers may require multiple paired ends to link a repetitive 
contig to a unique one. One recent study57 suggested that 
paired‑end libraries can be ‘tuned’ to the specific genome 
being assembled; in it, a strategy is described that uses a 
preliminary sequence assembly from unpaired reads to  
estimate repeat structure, which, in turn, can be used  
to design appropriate paired‑end libraries. 
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A combination of strategies exists for resolving 
problems that are caused by repetitive DNA, including 
sequencing strategies that use fragment libraries of vary‑
ing sizes57, post‑processing software that is designed for 
detecting misassemblies51, analysing coverage statistics 
and detecting and resolving tangles in a de Bruijn graph. 
One of the leading NGS assemblers, Allpaths‑LG, has 
specific requirements for the types of paired‑end reads 
that it needs for optimal performance20. None of these 
requirements completely solves the problems, however, 
and the ultimate solution may require much longer 
read lengths.

Alignment and assembly of RNA sequences 
High‑throughput sequencing of the transcriptome pro‑
vides a detailed picture of the genes that are expressed 
in a cell. RNA‑seq experiments capture a huge dynamic 
range of expression levels, and they also detect novel 
transcripts and alternative splicing events. In response 
to the rapid growth of these experiments, many new 
computational tools have emerged, some of which are 
shown in TABLE 1. RNA‑seq analysis centres around three 
main computational tasks: mapping the reads to a refer‑
ence genome, assembling the reads into full‑length or 
partial transcripts and quantifying the amount of each 
transcript. Above, we discussed the first two tasks in the 
context of genome resequencing projects and de novo 
assembly, and the problems caused by repeats are largely 
the same in transcriptome assembly and alignment. 

Splicing. A distinct challenge posed by RNA‑seq data 
is the need for spliced alignment of NGS reads. Simply 
put, this is the problem of aligning a read to two physi‑
cally separate locations on the genome, which is made 
necessary by the presence of introns. RNA‑seq aligners, 
such as TopHat58, MapSplice59, rnaSeqMap60, RUM61 and 
SpliceMap62 are capable of aligning a short read to two 
distinct locations. Other aligners, including TopHat‑
Fusion63, FusionSeq64, ShortFuse65 and SplitSeek61 have 
been designed to scan RNA‑seq data and to detect 
fusion genes that are caused by chromosome breakage 
and rejoining: a common event in cancer cells. Because 
a read must be split into pieces before alignment, spliced 
alignments are shorter, which, in turn, means that 
repeats present a greater problem than in full‑length 
alignments. For example, if an intron interrupts a read 
so that only 5 bp of that read span the splice site, then 
there may be many equally good locations to align the 
short 5 bp fragment. 

Spliced alignment algorithms address this problem 
by requiring additional, confirming alignments in which 
longer sequences align on both sides of each splice site. 
This strategy works well for alignments that span normal 
genes but, for fusion genes, repeats are particularly prob‑
lematic. Fusion gene discovery algorithms must allow 
a pair of reads to align anywhere in the genome; this 
means that the normal constraints on the distance and 
orientation of a mate pair cannot be used. When one of 
the reads falls in a repeat sequence, the algorithm may 
be faced with thousands of false positives. Collectively, 
this becomes millions of false positives when extended 

to all of the data from an RNA‑seq experiment. Most 
fusion gene aligners address this problem by excluding 
any read with more than one alignment, although some 
allow a small, fixed number of alignments. Without this 
restriction, algorithms for fusion gene detection might 
become computationally unfeasible. 

Gene expression. Another challenge that is unique to 
RNA‑seq data is the measurement of gene expression 
levels, which can be estimated from the number of reads 
mapping to each gene. The standard approach for esti‑
mating expression levels is to count the number of reads 
or read pairs (also known as fragments) that are aligned 
to a given gene and to normalize the count based on 
gene length and sequencing depth. (The measurement 
is usually expressed as reads or fragments per kilobase 
of transcript per million reads or fragments sequenced, 
abbreviated as RPKM or FPKM.) 

For gene families and genes containing repeat ele‑
ments (BOX 1), multi‑reads can introduce errors in esti‑
mates of gene expression. For example, suppose that a 
gene exists in two slightly different copies, A and B, and 
suppose that A is expressed at a much higher level than B 
is expressed. If the genes are very close paralogues, then 
most of the reads will map equally well to either copy. In 
regions where A and B diverge, reads will preferentially 
map to the correct version of the gene, but this might 
only be a small portion of the total transcript. Thus, 
the overall estimate of expression of A will be biased 
downwards, and the estimate of expression of B will be 
biased upwards. This error will increase as the sequence  
similarity between A and B increases.

One way to avoid this bias in the placement of multi‑
reads is the strategy implemented in ERANGE5 and 
related methods: these approaches distribute multi‑
reads in proportion to the number of reads that map 
to unique regions of each transcript. A similar idea was 
developed into a more sophisticated statistical model by 
Jiang and Wong66, who used it to allocate reads among 
different splice variants. A method that was developed 
by Chung et al.67 also places multi‑reads proportionally, 
after first estimating expression levels using an expecta‑
tion maximization algorithm. They demonstrated that, 
in contrast to methods that only considered uniquely 
mapped reads, their method can markedly increase cov‑
erage in ChIP–seq data, which, in turn, allows for detec‑
tion of signals that would otherwise be missed67. Li et al.68 
developed a software tool called RNA‑seq by Expectation 
Maximization (RSEM) to address the uncertainty that 
is inherent in multi‑read mapping by modelling both 
isoform levels and non‑uniform read distributions; this 
method produced improved expression estimates in the 
highly repetitive maize genome. Although it is not clear 
whether any of these methods is substantially superior 
to the others, what is clear is that ignoring multi‑reads 
can seriously interfere with accurate scientific analysis.

Conclusions
Advances in DNA‑sequencing technology, coupled with 
novel, efficient computational analysis tools, have made it 
possible to analyse sequencing‑based experimental data 
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on an unprecedented scale. In many of these studies, if 
not most of them, repetitive DNA sequences present 
major obstacles to accurate analysis. Repetitive sequences, 
which permeate the genomes of species from across the 
tree of life, create ambiguities in the processes of aligning 
and assembling NGS data. Prompted by this challenge, 
algorithm developers have designed a variety of strate‑
gies for handling the problems that are caused by repeats. 
For alignment of reads to existing genomes, focusing on 
uniquely mapped reads addresses some problems, such 
as SNP discovery, but more sophisticated approaches are 
necessary to avoid ignoring possibly important sections 
of a genome: for example, regions containing copy num‑
ber variation. For de novo genome assembly, shorter read 
lengths mean that repeats create much greater problems 
than they did in the era of Sanger sequencing. 

Current algorithms rely heavily on paired‑end infor‑
mation to resolve the placement of repeats in the correct 
genome context. This dependency may entail a substan‑
tial increase in cost, particularly for large insert sizes 
in fosmids or BACs (such as those used in the potato 
genome project), which can be difficult to obtain. Highly 
repetitive genomes continue to present a serious hurdle 

to assembly, and these genomes might remain difficult to  
assemble until read lengths increase substantially. The 
maize and potato genome projects, both of which were 
dealing with highly repetitive genomes, were able to 
avoid generating highly fragmented assemblies by using 
multiple sequencing technologies, creating multiple 
large insert libraries and using Sanger sequencing to cre‑
ate the longest insert libraries. Recent human genome 
assemblies that relied solely on Illumina technology and 
small insert libraries were less successful, leaving out 
hundreds of megabases of genomic sequence52. Finally, 
efforts for estimating gene expression in the presence of 
repeats have made important strides owing to sophis‑
ticated modelling techniques, which use the unique 
regions of each gene to estimate expression levels and 
then allocate multi‑reads based on statistical estimates. 
All of these strategies will probably rapidly evolve in 
response to changing sequencing technologies, which 
are producing ever‑greater volumes of data while slowly 
increasing read lengths. As it becomes easier to analyse 
repeats, we will probably learn much more about their 
role in disease and their contributions to gene function, 
genome structure and evolution.
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