Additive variance

The portion of the variance of a
quantitative trait that is due

to the single effects of alleles at
the loci that influence the trait.

Dominance variance

The portion of the variance of
a quantitative trait that is due
to the interaction of the two
alleles that an individual carries
at the loci that influence

the trait.

Affected-relative linkage
studies

Studies that aim to estimate
the degree of linkage between
a disease and a marker locus
on the basis of the marker
genotypes of relatives who
have the disease.
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Genetic relatedness analysis:
modern data and new challenges

The concept of genetic relatedness is central to many
aspects of life: marriage and inheritance laws are,
at least in part, based on the degree of relationship
among members of the same family. Similarly, foren-
sic scientists need to know the degree of relatedness
among members of the same population to estimate
match probabilities for DNA profiles. In agriculture,
measurements made on related individuals can be used
to estimate the additive and dominance components of
variance, which in turn are needed to predict the gain
from breeding programmes for domesticated plant and
animal species. In human genetics, a powerful approach
to mapping disease genes is based on comparing the
genetic marker profiles of affected relatives, and such
affected-relative linkage studies require that family rela-
tionships be accurately known. In an ecological context,
mating strategies in conservation programmes for
endangered species, for example, require knowledge of
the relatedness of potential mates. Relatedness reflects the
shared history of members of the same family or
the same population, and so it affects all characters that
have a genetic component.

Studies of relationship are phrased in terms of prob-
abilities that sets of genes have descended from a single
ancestral gene — that is, the probability that they are
identical-by-descent (IBD). There is a probability of one-
in-four, for example, that an individual would receive
identical copies of a gene from its parents if those parents
were siblings. This is just the chance that both alleles have
descended from the same one of the four alleles that are
carried by the two grandparents. If that particular form of
the gene were deleterious, the danger to the health
of a child who receives two copies is sufficiently high

Bruce S. Weir*, Amy D. Anderson* and Amanda B. Hepler*

Abstract | Individuals who belong to the same family or the same population are related
because of their shared ancestry. Population and quantitative genetics theory is built with
parameters that describe relatedness, and the estimation of these parameters from
genetic markers enables progress in fields as disparate as plant breeding, human disease
gene mapping and forensic science. The large number of multiallelic microsatellite loci
and biallelic SNPs that are now available have markedly increased the precision with
which relationships can be estimated, although they have also revealed unexpected
levels of genomic heterogeneity of relationship measures.

that it probably accounts for the prohibition of marriage
between siblings in all human societies.

Two individuals are said to be related if the allele or
alleles of one are IBD to those of the other. This review
begins by explaining some of the basic concepts in relat-
edness analysis. We then describe the statistical frame-
work that is used to link observed genotypes to the
probabilities of the IBD status of the constituent alleles,
and therefore to the probabilities of particular rela-
tionships between the genotypes. These probabilities,
which are derived on the basis of observed genotypes,
can then be used to make statistical inferences about
the degree of relatedness. For example, if two indi-
viduals are both heterozygous for different alleles at
a microsatellite marker, their four alleles at that locus
cannot be IBD. The observation would favour the hypoth-
esis that they are unrelated over the hypothesis that they
are half-siblings, although it might still be desirable
to attach probabilities to the various possibilities
for their actual relatedness.

We also discuss variation in relatedness across the
genome. Two types of marker — multiallele micro-
satellites and the more numerous biallelic SNPs — are
currently used for relatedness analysis. Both types of
marker have revealed considerable variation in the
degree of relatedness along a chromosome; this means
that methods for mapping disease genes, devising breed-
ing patterns or determining the probabilities of coinci-
dental matches among forensic profiles might need to be
tailored to specific genomic regions.

Current markers also allow relatedness to be studied
when relatives are themselves inbred, that is, when their
parents are related. Because of this added complexity,
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Box 1| Measures of relatedness

a Full-siblings

A (ef) B (g,h) Parents
a d
b c

X (a,b) Y (c,d) Offspring
b Siblings descended from first cousins

G (i) H (L,m) Great grandparents
Cc D E F  Grandparents

\A/ \B/ Parents (first cousins)
a d
b c

X (a,b) Y (c,d) Offspring

Relatedness measures are the probabilities of the identity-by-descent patterns that
are possible among the four alleles of a gene that two individuals share. The figure
shows some example pedigrees. Individuals are indicated by capital letters and
allele labels are given in brackets. It is important to note that the genotypes are
unknown: the notation (a,b) is simply a convenient way of referring to the
constituent alleles of an individual.

Consider, first, one allele chosen at random from each individual: the coancestry
coefficient between the two individuals is the probability that those two alleles are
identical-by-descent (IBD). In panel a individuals X and Y are full-siblings whose
parents are A and B. An allele (a or b) from individual X has a one-in-four chance of
having descended from the same parental allele (e, f, g or h) as an allele (c or d) from
its sibling Y. This common origin means that the two alleles from X and Y are IBD, so
the coancestry coefficient of full-siblings is one-in-four. Also, there is a one-in-two
chance that a random allele (a) from X descends from parent A and a further one-in-
two probability that a has descended from one or the other random allele (e or f)
from A. The coancestry coefficient for parent—child is therefore also one-in-four.

A more detailed description gives the number of IBD pairs of alleles that any two
individuals share: 0, 1 or 2. For the full-siblings X and Y in panel a, each of the allele
pairs a,c and b,d have a one-in-two probability of being IBD (copies of the same
parental allele) independently of the other pair. The three events of neither, either or
both pairs being IBD are therefore one-in-four, one-in-two and one-in-four,
respectively (k,= k = 1/4,k, = 1/2). For X, allele a must be IBD to one of the alleles in
parent A, whereas allele b cannot be IBD to either of A’s alleles. The event of one pair
of IBD alleles for parent and child therefore has a probability of one (k,=k =0, k, = 1).

This review refers to recent work that provides estimates of a more detailed set of
up to 15 probabilities®* — these refer to all possible patterns of IBD among the four
alleles for two individuals and are needed when the alleles within individuals are
IBD — meaning the individuals are inbred. Consider any two individuals X and Y
with alleles a,b and c,d. There might be no identity among the four alleles or any of
the six pairs of alleles (a,b; a,c; a,d; b,c; b,d; c,d), or any of the four triples of alleles
(a,b,c; a,b,d; a,c,d; b,c,d) might be IBD. There are also three possibilities that there
are two IBD pairs (a,b and c,d; a,c and b,d; a,d and b,c) and, finally, all four alleles
(a,b,c,d) might be IBD. For the siblings X and Y in panel a, it is only the two pairs a,c
and b,d that might be IBD and the expanded set of measures is not needed. For
siblings whose parents are first cousins, as in panel b (in which parents A and B of
full-siblings X and Y are themselves first cousins with common grandparents G
and H), all 15 IBD patterns are possible because each of the alleles a,b,c,d could
have originated from any of the four alleles i,j,[,m that are carried by the two
grandparents G and H who are shared by the cousins.

In most applications there is no need to distinguish between maternal and
paternal alleles and the number of IBD classes reduces from 15 to 9: the event that
alleles a,b,c are all IBD can be combined with the event that alleles a,b,d are all IBD,
for example.

only the use of independent markers for pairs of indi-
viduals is covered in this review. Allowing for linkage or
linkage disequilibrium between the markers, and the inclu-
sion of multiple relatives, would greatly increase the
number of relatedness parameters and would therefore
complicate the analysis.

This review is intended to inform agricultural,
ecological, forensic and medical geneticists about the
ways to describe relatedness between pairs of individu-
als. Methods are described for using modern genetic
marker data to estimate the degree of relatedness
between individuals or to address suggested degrees
of relatedness. The review also emphasizes that the
actual relatedness for specific genes differs from
the amount predicted by the genealogical history of the
individuals.

Basic concepts in relatedness analysis

From genotypes to inferences about relatedness.
Identity-by-descent is crucial to measuring relatedness;
however, it is an unobservable quantity. What can often
be observed instead are the allelic states (that is, the
genotypes) at a locus, and so the challenge is to move
from observation to inference about relatedness. For
example, the observed allelic states of an unidentified
body and the brother of a missing man can be used to
address the question of whether the body is that of the
missing man. Furthermore, the allelic states that were
observed at several genetic markers for plants of the
Cabernet Sauvignon, Cabernet Franc and Sauvignon
Blanc grape varieties allowed a determination that the
first variety was the offspring of the other two'.

Alleles that seem to be the same are termed ‘iden-
tical-in-state’. This could mean that they are both the
same base type for a SNP or that they both have
the same number of repeat units for a microsatellite.
Identity-in-state does not generally equate to identity-
by-descent, although it is sufficient to infer identity-by-
descent in some cases. For example, if the allelic pairs
for two parents are A A and A A, then the A alleles
that are carried by their children, who both have geno-
types A A, must be IBD, as they are copies of the same
parental allele; by contrast, it is not known whether the
childrens’ A, alleles are copies of the same or different
parental alleles.

In this review, we show that it is reasonably
straightforward to find the probability of the geno-
types of individuals when their relationship is known,
but that it can be difficult to do the reverse and infer
the probability of a relationship given the genotypes
— as is required for most practical applications. So,
if a man is observed to be homozygous A A, and it is
known that the frequency of the allele A, in the popu-
lation is 0.2, then the probability that his brother is
also A A, is 0.36, as opposed to the value of 0.04 for
unrelated people. However, it is difficult to determine
the relationship of two men who are both observed to
be A A, because even unrelated people can have the
same genotype. We show that more reliable statements
about the degree of relatedness are possible when more
genetic markers are used.
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Microsatellite

Also known as a short tandem
repeat. A class of repetitive
DNA that is made up of repeats
that are 2—-5 nucleotides in
length. The number of these
repeats is usually extremely
variable in a population.

Linkage disequilibrium
The non-random association of
alleles at different loci, whether
or not the loci are linked.

Minisatellite

A region of DNA in which
repeat units of 10-50 bp are
tandemly arranged in arrays
that are 0.5-30 kb in length.

Association study

A study that aims to identify
the joint occurrence of two
genetically encoded
characteristics in a population.
Often, an association between
a genetic marker and a
phenotype (for example,

a disease) is assessed.
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Molecular marker types. The analysis of more markers
increases the reliability of relationship inference and
allows more detailed statements to be made, especially
given the availability of microsatellite loci and large
numbers of SNPs. Relatedness analysis in humans began
with paternity testing in the 1920s, but the small number
of marker loci (usually involving the ABO, Rhesus and
MNS blood-group antigens), the small number of alleles
at each locus and the dominance of some alleles over
others made it impossible to be precise about estimat-
ing the relationship. In 1985 minisatellite markers were
introduced by Jeffreys et al.?, but even then the lack of
direct correspondence between the observed bands
(of the DNA fingerprint’) on a gel and specific alleles at
alocus made it difficult to quantify relatedness.

Minisatellites have now given way to microsatellites
and, more recently, to SNPs. Microsatellites have been
used widely in paternity testing and forensic science
since the mid-1990s: these markers have the advantage
of being multiallelic and co-dominant (so that there is
no masking of one allele by another). The high degree
of variability of microsatellite markers also makes them
invaluable for human genetic linkage studies: all individu-
als within the CEPH (Centre d’Etude du Polymorphisme
Humain) linkage panel have been typed at over 32,000
microsatellite markers. Association studies now almost
exclusively make use of biallelic SNPs, which are present
in far greater numbers; for example, the International
HapMap Project data set has genotypes on almost six
million SNPs. A comparison of the utility of micro-
satellite and SNP markers for relatedness estimation
is given later.

Box 2 | Calculating the coancestry coefficient

Calculating the coancestry coefficient

@G
C @2,
\?A?/
a
b

X (a,b)

H(m) @ Great grandparents
E®® F  Grandparents
\QBQ/ Parents (first cousins)
d
c
Y (c,d) Offspring

To calculate the inbreeding coefficients in pedigrees, an individual’'s genealogy is
traced back on both the maternal and paternal sides until an ancestor that is common
to both lineages is found. The number n of individuals in the pathway that link the
parents to the common ancestor, including the parents themselves, is used as a power
of 0.5, and the 0.5" terms are added over all pathways and common ancestors.

For first cousins, such as A and B, n = 5; as there is one path (shown in colour) to each of
the two grandparents G and H whom they have in common, the inbreeding coefficient
of their child X is 2(0.5)° = 1/16. If a common ancestor (for example, G) is himself inbred,
then his contribution to the inbreeding coefficient (F) of the descendant is (1 + F)(0.5)".

For the two siblings, X and Y, whose parents, A and B, are first cousins, there are four
common ancestors: A and B and the two great-grandparents G and H. There are three
people in the paths XAY and XBY, and seven people in each of the paths XADGEBY,
XBEGDAY, XADHEBY and XBEHDAY (the paths are not shown). The coancestry
coefficient for X and Y is therefore 2(0.5)° + 4(0.5)"= 9/32.

Background relatedness. Any two individuals in a finite
population are related in the sense that they must have a
common ancestor at some point in the past. This means
that any relatedness between individuals occurs against
a background level of relatedness in the population.
Background relatedness is low for human populations,
but statistical tools that allow its effects to be quantified
are needed for both human and non-human popula-
tions. Its effects can be felt in human linkage studies: if
background relatedness is neglected, the predicted level
of allele sharing between affected relatives will be less
than it should be and the increased difference between
the predicted and observed sharing might lead to false
declarations of linkage. In conservation biology, the
relatedness between potential mates could be underesti-
mated if population effects are ignored, and this can lead
to increased homozygosity and reduced fitness among
the resulting offspring.

This review describes how to measure the relatedness
of any two individuals who might themselves be inbred,
either as a consequence of inbreeding within the family
or by belonging to the same population.

Statistical methods: general principles

Here we describe the general principles of the statistical
methods that underlie relatedness analysis. The possible
patterns of identity-by-descent among the alleles that are
carried by two individuals are described, and how the
probabilities of these patterns can allow one to measure
the degree of relationship. For example, the allele that a
child receives from its parent is IBD to one of that par-
ent’s alleles; we can therefore say that parent and child
share exactly one pair of IBD alleles, and quantify the
relationship by saying that the probability of one pair
of IBD alleles is one. We can conclude that two people
who are observed to have no alleles in common cannot
be related as parent and child.

Inferential studies fall into two broad categories: the
observed genotypes can be used to distinguish between
a set of possible alternative degrees of relationship, or
they can be used to estimate an unknown degree of
relationship. For example, it would be possible to use
the observed genotypes of individuals X and Y, who
are offspring of parents A and B (BOX 1a), to conclude
that they are more related than cousins. Alternatively,
the actual degree of relatedness between X and Y can
be estimated.

This section begins with a definition of the probabilities
of identity-by-descent and discusses the evaluation of
these quantities. We then show how these probabilities
allow genotype probabilities for related individuals to
be expressed in terms of allele frequencies. The section
concludes with a discussion of distinguishing between
alternative relationships or estimating the degree of
relationship for two individuals.

Measures of relatedness. Characterizing the relatedness
between individuals rests on the probabilities that their
alleles are IBD. Before undertaking any relatedness analysis
it is important to establish the level of detail needed.
In theory, it would be possible to use a single number
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Figure 1| Complete set of identity-by-descent measures. Suppose individuals X and
Y have alleles labelled a,b and c,d at some locus. The 15 patterns of identity-by-descent
among the four alleles are shown here and the corresponding probabilities (8) are given
using the notation of Cockerham?®. Alleles that are identical-by-descent (IBD) are shown
within shaded boxes. It is generally neither possible nor necessary to distinguish between
maternal and paternal alleles, and this leads to the reduction of the 15 & probabilities to 9
IBD arrangements, for which the probabilities are shown as Jacquard’s coefficients* (A, )
in the figure (shaded boxes). For non-inbred individuals, the 15 probabilities are
collapsed to a set of three k coefficients (ko, kl, kz), which are indicated by the darker
shaded boxes. Numerical values shown in parentheses are the 8 and A probabilities of the
IBD pattern for the pedigree in BOX 1b. Each set can be summarized by the coancestry
coefficient (6) for those individuals. This coefficient is the probability that a random allele
(a or b) from one of themis IBD to a random allele (c or d) from the other. The calculation
of Qis provided below the figure using 8, A or k.

— the probability that a random allele from one indi-
vidual is IBD to a random allele from the other — but
then it would not be possible to distinguish between
full-sibling and parent—offspring relationships, for exam-
ple. A more useful description uses three probabilities:
those for the individuals having zero, one or two pairs of
IBD alleles (k, k, and k,).

As an introduction, consider the identity of the two
alleles a,b, which are carried by an individual (noth-
ing is implied about identity-in-state by this notation).
Then, the probability that a and b are IBD is defined as F,
the inbreeding coefficient of the individual. This and all

Inbreeding coefficient

The probability that an
individual carries two identical-
by-descent alleles at a locus.

Coancestry coefficient

The probability that two alleles
at alocus, one taken at
random from two individuals,
are identical-by-descent. It is
also called the coefficient

of parentage or coefficient of
consanguinity.

other probabilities of identity among alleles are defined
relative to some reference point in the past (the point at
which all ancestors are assumed to be unrelated). For
a child of a first-cousin marriage, this reference point
might be the grandparents of the cousins, in which case
the inbreeding coefficient is one-sixteenth: there is a
one-in-four chance that the two alleles of the child both
come from the parents’ common grandparents, and then
a one-in-four chance that they are from the same grand-
parental allele. For the case of full-siblings, in which
the inbreeding coefficient of their child is one-quarter
(BOX 1a), the reference population is the parents of the
siblings. Inbreeding coefficients in pedigrees can be
calculated by a simple counting rule, which is described
in BOX 2.

Moving on to the relationship between individuals,
the coancestry coefficient of two individuals is the same
as the inbreeding coefficient of any child they might
have. The coefficient can be calculated for pedigrees
by applying the counting rule to the path that links the
individuals to their common ancestor(s) (BOX 2).

The most detailed description of relatedness is needed
to accommodate the additional inbreeding that results
from moving the reference point further back in time. In
the case of cousins, grandparents might be regarded as
being taken from a population in which all members are
considered to be related because of the evolutionary his-
tory of the population. The magnitude of this background
relatedness depends on the loci under consideration,
as it is influenced by mutation.

In this framework, it is recognized that alleles within,
as well as between, individuals might be IBD; this con-
sideration leads to 15 possible IBD patterns® for the
four alleles that are carried by two individuals (BOX 1b;
FIG. 1). It is generally neither possible nor necessary to
distinguish maternal and paternal alleles, and this leads
to a reduction to nine IBD arrangements (FIC. 1). When
the two individuals are inbred to the same degree, the
number of IBD states reduces to seven. There is a final
reduction when neither individual is inbred relative to
the reference population, as then neither a,b nor ¢,d are
IBD: in this case there are only three IBD states. The
values of the three probabilities that are needed for some
common non-inbred relationships are given in TABLE 1.

Note that throughout this review it is assumed that
mutation destroys identity-by-descent. Specific muta-
tion regimes can be postulated if IBD measures are
to be predicted, but the estimation procedures to be
described do not need specification of mutation or any
other evolutionary process.

Joint genotypic probabilities. In the previous section we
described the pattern of IBD status in a pedigree, but it
is genotype rather than IBD status that can be observed,
and the first step in making inferences about IBD prob-
abilities is to express the genotype probabilities for pairs
of individuals (or ‘joint probabilities’) as functions of the
allele probabilities. The probability that two unrelated
and non-inbred people are both homozygous A A is
P *, whereas the probability that two full-siblings are
homozygous A A is P*(1 + P )*/4.
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Table 1| Identity-by-descent probabilities for common, non-inbred relatives

Relationship k,
Identical twins 1
Full-siblings 1/4
Parent—child 0
Double first cousins 1/1
Half-siblings* 0
First cousins 0
Unrelated 0

*Also grandparent—-grandchild a
three identity-by-descent proba

k, k, 0=k /4+k,/2
0 0 1/2
1/2 1/4 1/4
1 0 1/4
6 3/8 9/16 1/8
1/2 1/2 1/8
1/4 3/4 1/16
0 1 0

nd avuncular (for example, uncle-niece). The table shows the
bilities (k, ,) and the coancestry coefficients (6) for common

relationships. Note that the coancestry coefficient for full-siblings and parent—child is the same
(1/4), but that the pattern of allele sharing is different in each case (that is, there is a different set
of kvalues). k, the probability of sharing i number of identical-by-descent alleles (where i = 0-2;
see also BOX 1; FIG. 1; 6, the coancestry coefficient of two individuals (equivalent to the
inbreeding coefficient of their offspring).

Unordered genotypes

The probability of unordered
genotypes does not require
specifying which genotype
belongs to which individual (for
example, which is for the
parent and which is for

the child). By contrast, the
probability of ordered
genotypes requires this
information.

For a single individual, the two alleles at a locus are
either IBD or not IBD with probabilities F and (1 - F),
respectively. In the first situation, the IBD alleles must
be the same type, so the chance that they are both of
type A, is the same as the chance that either of them
is of that type; this is the population frequency P, of
that allele. If two alleles at a locus are not IBD then
they are independent and each has its own chance P,
of being of type A. The probability (Pr) of a homozy-
gote A A, is therefore Pr(A,A) = FP, + (1 - F)P?, and
the correspondlng result for a heterozygote AA,i#]is
Pr(Ax.Aj) =2(1-F)P, P The factor of 2 allows for each
allele to be either maternal or paternal. The same logic
leads to the joint probabilities of all seven possible pairs
of unordered genotypes, which are shown in TABLE 2.

Distinguishing between relationships. In paternity testing,
it is necessary to decide whether an individual is the

father of a child or unrelated to the child. For remains
identification, it is necessary to decide whether the
remains are from a person with a specified relationship
to a family member of a missing person. Although an
absolute determination of relationship cannot be made,
it is possible to find which of the competing putative rela-
tionships makes the observed genotypes most probable
by using likelihood ratios, which compare the probabilities
of the observed genotypes under alternative hypotheses
about relationships. For non-inbred relatives, when
only the three relationship coefficients are needed, and
in the case in which the alternative is that the individu-
als are unrelated, the likelihood ratio has a simple form*
(Supplementary information S1 (box)).

Approaches based on likelihood ratios have been
used since the earliest days of paternity testing. Here,
the putative relationships are that the alleged father is
indeed the father of a child or that he is unrelated to
the child, and the likelihood ratio is called the paternity
index. In a forensic setting, the relationship alternatives
might be ‘self” or ‘unrelated’: the suspect in a crime is
either the source of a biological stain or is unrelated to
the source of that stain.

More recently, a likelihood ratio expression was used*
to identify remains from the World Trade Center; geno-
types from tissue found at the site and from a family
member of a missing person were examined for pos-
sible full-sibling or parent-offspring relationships. This
approach considerably reduced the number of calcula-
tions that would have been necessary if all the possible
relationships between a tissue sample and everyone who
had lost a relative were considered. In practice it can be
difficult to distinguish between full- and half-siblings,
because loci with the same genotype are more common
in full-siblings whereas loci with different genotypes
are more common in half-siblings®. Nevertheless,
provided the two degrees of relationship that are being

Table 2 | Joint genotypic probabilities

Genotypes Genotypic Number of General Non-inbred
state shared alleles

1 AAAA Hom/hom 2 AP+ (Ag + Ag + A + A)P2 + (Ay + Ag + Ag)P3 + AgPit koP2 + kqP3 + koP#
2 AAAA Hom/hom 0 APPy+ APPE + AP2P; + AgP2P? koP2P;2
S Agpady bemi L 3PP+ (284 + AgP2P; + 2AgP3P; kyP2P; + 2koP3P;
4 A[Al, AAL Hom/het 0 20,PPPy + 280P2PP,, 2koP 2P,
5 AMAA Het/het 2 20:PP;+ AsPPP; + P) + 4AgP2P2 2k,PiP;+ ki PP+ P) + 4koP2P2
6 AiAj’AiAm Het/het 1 AgPPP o+ 40P 2PP,, kyPiPP,, + 4koP2PP,,
7 Al.Aj, ALA Het/het 0 4A9PinPmPl 4kOPinPmPl

The table shows seven distinct patterns of genotypes that are possible for two unordered individuals, and the probabilities of these pairs of genotypes in general, or
assuming no inbreeding. Two genotypes could be homozygous (hom) for the same or different alleles (rows 1 and 2), one could be homozygous and the other
heterozygous (het) with one or zero shared alleles with the homozygote (rows 3 and 4), or both individuals could be heterozygous with two, one or zero shared
alleles (rows 5-7). There are nine pairs of genotypes if the ordering of individuals is important (not shown), as the genotypes in rows 3 and 4 (one homozygote and

one heterozygote) each have two orders. k, the probability of sharing i number of alleles that are identical-by-descent (where i = 0-2; see also FIC.
,Jacquard coefficients, which are measures of identity-by-descent status (BOX 1; FIG. 1).

frequency; A

1); P, allele
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Likelihood ratio

The ratio of two probabilities
for the same observations,
calculated under alternative
hypotheses. In the context of
relatedness analysis, the
likelihood ratio is formed by
dividing the probability of the
observed pair of genotypes
using the identical-by-descent
probabilities for one possible
relationship by the probability
of the genotypes using
identical-by-descent
probabilities for the other
possible relationship. The
likelihood ratio is a continuous
variable that can take any non-
negative value, and values
greater than one support the
relationship used for the
numerator.

CODIS forensic set

A set of 13 highly polymorphic
and essentially unlinked
microsatellite markers that
were developed by the US
Federal Bureau of
Investigations for human
identification purposes.

Bayesian (framework)

An inference framework in
which the posterior probability
of a parameter depends
explicitly on its prior
probability, reflecting some
previous belief about this
parameter.

Maximum likelihood
(method)

The process of estimating
parameters by choosing their
values to maximize the
probability of some observed
data.

Bayes theorem

The means of going from a
probability of one event, given
another, to the probability of
the second event, given the
first. It is often used to express
the (posterior) probability of a
hypothesis, given some data,
as being proportional to

the probability of the data,
given the hypothesis,
multiplied by the (prior)
probability of the hypothesis.

Prior probability

The probability of an event
or hypothesis before
consideration of some data
that will alter the probability
of that event or hypothesis.
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Figure 2 | Likelihood ratios for putative full-siblings.
Owing to the probabilistic nature of relationship inference,
distinguishing between relationships can be difficult, and
evidence for a relationship might be found when none is
justified. This point is exemplified by a study of 195
Caucasians® who were drawn randomly from a population
and are presumed to be unrelated. All pairs of individuals in
the sample were typed for all of 13 microsatellite loci (the
CODIS forensic set*). For each pair of individuals, the
likelihood ratio for the hypotheses of full-siblings versus
unrelated was calculated for each locus and the results
were multiplied over loci. A histogram of the 18,195 log-
likelihood ratio values is shown: just under 3% of the values
have a likelihood ratio greater than 1 (those to the right of
the vertical dashed line), which would favour the
hypothesis of sibship.

compared have different relatedness coefficients, they
can be distinguished by using a sufficient number of
markers (a small number of markers might not allow
a distinction®).

Reid et al.” used likelihood ratios to distinguish
between 50 pairs of known full-siblings and 50 pairs
of known unrelated individuals using a panel of 15
microsatellite loci. The likelihood ratios for comparing
full-sibling with unrelated relationships ranged from 4.6
to over 10° for the true siblings, and from 4.5 x 10°% to
0.12 for the unrelated individuals. In this study, classify-
ing a pair as full-siblings when the likelihood ratio is
greater than 1 would have given the correct conclusion
in all 100 pairs. This is not generally the case, however,
as shown in FIG. 2.

These examples demonstrate the probabilistic nature
of relationship inference. Even if two individuals are
unrelated, it is possible to obtain genetic information that
supports the hypothesis that they are related. Similarly,
the observed marker genotypes might suggest an incor-
rect relationship over the correct one for related indi-
viduals. This uncertainty is inevitable given the random
nature of the choice of which of its two alleles an indi-
vidual transmits to its offspring, but the use of likelihood
ratios allows the most information about the relationship
to be extracted from the observed genotypes.

A recent application of likelihood ratios is described
on the web site for The a-China DNA Project, which was
set up to assist parents who wish to determine whether
a Chinese child is a sibling of a child they have already

adopted from China. Determining sibling relationships
for Chinese family reunions was also an issue follow-
ing the thawing of political hostility across the Taiwan
Strait®. In forensics, Bieber et al.’ described a technique
known as ‘familial searching} in which a genetic profile
of interest in a crime is compared to every profile in a
database of known offenders with the goal of identify-
ing either a person who has that profile or some close
relative of that person.

Estimating relationships: Bayesian approaches. Instead
of distinguishing between alternative relationships, it is
possible to estimate the actual degree of relationship,
or at least to estimate the various relationship param-
eters (for example, the coancestry coefficient). Two
approaches will be considered: Bayesian (this section)
and maximum likelihood (next section).

The likelihood ratios that were described in the
previous section compare the probabilities of
the observed genotypes that are conditional on the
assumed relationship. What is needed in practical
applications, however, is the probability of a relation-
ship that is conditional on the genotypes. The probabil-
ity that two individuals are homozygous AA given that
they are parent and child is P,’, but the probability
that they are parent and child given that they are both
homozygous AA cannot be found without additional
information. The process of converting the condi-
tional probability of relationship given the genotype
to the probability of an observed genotype given a
relationship is accomplished with Bayes theorem,
and requires the specification of a prior probability of
relationship.

If there was prior probability (7,) for the relation-
ship, compared with being unrelated, then the likeli-
hood ratio (L) for this situation of two alternatives
will give a posterior probability (7) from the expression
7= [Lm]/[1+ (L -1)x,]. This expression is most likely to
be useful in a situation in which a relatively small number
of remains must be identified, as is the case following
an airplane disaster'®'": if a genetic profile is available
from the parent of one of the 100 victims, then it might
be reasonable to assign a prior probability of 1/100 to a
parent—child relationship for each of the 100 remains.

Estimating the degree of relationship: maximum likeli-
hood approach. Instead of starting with the prior prob-
abilities of a relationship, an alternative is to estimate the
IBD probabilities that characterize relatedness. The best
estimation procedure is that of maximum likelihood,
whereby the IBD probabilities are chosen to maximize
the probability of an observed pair of genotypes (FIC. 3).

Estimating IBD probabilities is useful in situations
in which the degree of relationship does not fall into
one of the simple standard cases such as full- or half-
siblings — for example, when individuals are inbred.
Observations from individuals such as X and Y in
BOX 1b would support a full-sibling relationship, but
simply comparing likelihood ratios for full-siblings
versus other standard relationships would fail to detect
the increased relatedness that arises from their parents
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Figure 3 | Effect of background relatedness on coancestry estimates. Mean values
over 500 replicates of maximum likelihood estimates (MLE) of coancestry coefficients for
pairs of individuals with known relationships (unrelated, first cousins, half-siblings and
full-siblings) in populations with known background coancestries (6= 0, 0.05, 0.1).
Estimates are based on three, seven or nine identical-by-descent (IBD) coefficients.
Because the coefficients sum to 1, only two, six or eight need to be estimated, and the
estimates are labelled 2D, 6D or 8D, respectively. When values of fare low (including
0=0), the cases that involve a larger number of parameters (6D and 8D) each produced
estimates with some bias and sampling error compared with the 2D case (the red line in
the 6= 0 column is closer to the black line than either the blue and green lines), leading
to less accurate estimates of 6. As @increases, the 2D parameters become less able to
capture the complete pattern of IBD among the four alleles, whereas the coancestry
estimates involving 6D and 8D parameters become more accurate.

being cousins. Thompson'? described the maximum
likelihood method in the three-parameter non-inbred
case, and Milligan'® gave the nine-parameter likeli-
hood that allows for inbreeding. Details of maximum
likelihood estimation are shown in the Supplementary
information S2 (box).

There is an immediate application of maximum like-
lihood to affected-relative linkage studies, which require
knowledge of the relationships among the individuals
under study. If the marker-based relationship estimates
differ from those inferred from the stated relationship,
this indicates that either the relationship is not as stated
or the marker genotyping contains an error. In plant or
animal breeding there is the additional complication
that previous generations of artificial selection could
have changed the actual relationships from what would
be predicted from known pedigrees, and it is the actual
relationships that are needed to predict gains under
further selection regimes'.

Posterior probability

The probability of an event or
hypothesis after consideration
of some data that have altered
the probability of that event or
hypothesis.

Population substructure
The existence of groups of
individuals within a population
that have some degree of
reproductive isolation from the
rest of the population, and for
which the allele frequencies are
likely to be different from the
population as a whole.

Whether two or more possible degrees of relation-
ship are to be compared for remains identification,
or whether the coefficients of relationship are to be
estimated for conservation genetics or plant and animal
breeding, it is first necessary to express the probabilities
of the observed genotypes as functions of IBD measures.
In the first case the IBD measures are specified and
in the second case they are estimated. In either situa-
tion, the availability of rich marker sets allows for more
detailed sets of IBD measures to be used than the usual
set (k,, k, and k; BOX 1). This means that there are several
markers in a short region of the genome, and it might be
reasonable to assume equality of the IBD status at each
marke